ホットプレス焼結 TiSi2-WSi2 系複合セラミックスの

機械的 · 電気的特性

堀口勝三*1·森山実*2

Mechanical and electrical properties of hot-pressed TiSi₂-WSi₂ composite ceramics

HORIGUCHI Katsumi and MORIYAMA Minoru

TiSi₂ and WSi₂ ceramics have high electrical conductivity and good oxidation resistance. The composite ceramics of them were sintered by hot-pressing method at 1170-1670 °C ×40min under mold-pressure of 28.3MPa in Ar atmospher. Their properties were examined in the TiSi₂-WSi₂ system with compositional change of 0.2mol step.

As a result, the ceramics showed bulk density of 3423-9347kg/m³, relative density 83.3-94.8%. Vickers hardness 4.59-14.7GPa, flexural strength 136-280MPa, fracture toughness(K_{IC}) 1.83-3.28MPa \cdot m^{1/2}, Young's modulus 170-412GPa and electrical conductivity 0.63-6.13MS/m. The electrical conductivity is below 1MS/m because of the crystal disorder in the composite, contrary to expectations.

+-
abla -
F: TiSi₂, WSi₂, composite ceramics, hot-pressing

1. 緒 言

耐酸化性を有する高強度・高導電性複合セラミック スは、一般にSi系セラミックスが多く、代表的候補 材料としてTiB₂、TiSi₂、TaSi₂、WSi₂などが挙げら れる^{1),2)}.これらのセラミックスは、高温ストレーン ゲージへの応用³⁾やFETのゲート電極並びにバイポ ーラ・トランジスタのエミッタ電極への適用⁴⁾、さら に、CVD法によるSiデバイスの表面処理への応用⁵⁾ などが既に試みられている.著者らは、これらのSi系 の中でも電気伝導度が大きいTiSi₂とWSi₂セラミッ クスを対象とし、これらの複合系についてホットプレ ス(HP)法を用いて焼結し、特性評価した.具体的には、 TiSi₂からWSi₂まで、WSi₂を 20mol%ステップで0 ~100mol%含有量を変化させた複合セラミックスを, Arガス雰囲気中、組成に応じて温度1170~1670℃で 40分間、HPE 28.3MPaの条件でホットプレス焼結 を行ない,密度,硬度,曲げ強度,破壊靭性値,ヤン グ率,電気伝導度などの特性を調べた.以下,その実 験および結果について報告する.

2.実験

2-1 原料

実験に用いたセラミックス粉末は、日本新金属製ケ イ化チタン粉末 TiSi₂-F およびケイ化タングステン粉 WSi₂-F を用いた.表1に、組成成分表と平均粒径を それぞれ示す.

2-2 試料の作製

表2に,作製した試料の試料名,組成,粉末量,ホ ットプレス焼結条件をまとめて示す.

先ず,電子天秤を用いて,TiSi2とWSi2粉末を,表 中に示す所定量を計量した.空のボールミルポットに 直径 10mm のナイロンボールを容積の半分程度入れ, エタノールを注ぎ,さらに計量した粉末を加えた.バ インダー及び焼結助剤粉末等は一切添加していない. ポットに蓋をし,24h間ボールミル装置で混合・粉砕 し,スラリーを作製した.

スラリーをステンレス製バットに流し,自然乾燥し

^{*1} 工学科機械ロボティックス系教授

^{*2} 長野工業高等専門学校名誉教授 原稿受付 2023年5月19日

表1 実験に用いた原料粉末の組成

粉末原料		化学成分 [mass%]					
	松皮 [µm]	Si	С	Fe	0		
TiSi ₂ -F	$2.0 \sim 5.0$	$52.2 \sim 54.7$	≤ 0.15	≤ 0.30	≤ 1.0		
WSi ₂ -F	$2.0 \sim 5.0$	$22.3 \sim 24.3$	≦0.10	≦0.20	≤ 0.7		

表2 粉末計量と焼結条件

	組成(モル分率)		組成(質量分率)		粉末量			HP 焼結条件		
試料名	$TiSi_2$	WSi_2	$TiSi_2$	WSi_2	$TiSi_2$	WSi_2	合計	温度*1	時間	HP 圧
	[mol%]	[mol%]	[mass%]	[mass%]	[g]	[g]	[g]	[°C]	[min]	[MPa]
WSi ₂ -0	100	0	100	0	60.000	0	60	1170	40	28.3
WSi_2-20	80	20	63.424	36.576	44.397	25.603	70	1270	40	28.3
WSi_2-40	60	40	39.404	60.596	33.887	52.113	86	1370	40	28.3
WSi_2 -60	40	60	22.421	77.579	22.421	77.579	100	1470	40	28.3
WSi_2-80	20	80	9.778	90.222	11.734	108.266	120	1570	40	28.3
WSi ₂ -100	0	100	0	100	0	135.000	135	1670	40	28.3

*1 焼結温度:粉末素材の融点 T(K) ×0.8 を基準にして設定

TiSi2の焼結温度 (1500+273)×0.8=1418K→ 1145℃→ 1170℃に設定

WSi2の焼結温度 (2160+273)×0.8=1945K→ 1672℃→ 1670℃に設定

上記の複合体焼結温度は、WSi2の0.2mol 組成変化に対して、100℃ステップで焼結温度を上昇させた.

表3 試料形状と粉末の型充填量

	複合体	粉末型充填量
	理論密度	(1個分)
試料名	kg/m ³	g
WSi ₂ -0	4043	36.390g
WSi_2-20	5155.2	46.401g
WSi_2-40	6291.8	56.631g
WSi_2 -60	7453.8	67.090g
WSi_2 -80	8641.9	77.784g
WSi ₂ -100	9857	88.721g

た後, さらに約 60℃で電気炉乾燥した. 乾燥スラリー を乳鉢に移し, 細かく粉砕した. 布ふるいを通し(粗い 粒を取除き), 直径 100µm 程度の顆粒(granule)を作製 した.

表3に示す1回の焼結分の顆粒を計量し、ホット プレス黒鉛型に均一な厚みとなるように充填した.黒 鉛型は、内径42mmの円筒型で、厚さ6.5mmで充 填した場合、その粉末充填体積は9000.8mm³とな る.ホットプレス法による焼結は、抵抗発熱式ホット プレス電気炉(富士電波工業製ハイマルチ5000)を用 いて、高純度Ar不活性ガス雰囲気中、組成に応じて 設定した表2に示す焼結温度で40分間、HPE 28.3MPa (全圧39.2kN)で焼結した.

JIS 規格に合わせて,曲げ試験片(3×4mm)をダイ ヤモンドカッター方式の切断機で切出した.また,切 出した試験片の表面を,ダイヤモンドスラリーを用い てポリッシングした.

2-3 特性評価

嵩密度は、ピクノメータ法 ⁶により 50ml の比重瓶を 用いて測定した.空の比重瓶の質量 (W₁)、比重瓶と 試料の質量 (W₂)、比重瓶に試料を入れ、さらに水を 満たした質量 (W₃)、比重瓶に水のみを満たした質量 (W₄)を、電子天秤を用いて測定した.またこのとき の水温も記録した.これらの測定値から次の式を用いて密度 ρ を求めた.

$$\rho = \frac{(W_2 - W_1)S}{(W_4 - W_1) - (W_3 - W_2)} \quad [kg/m^3] \tag{1}$$

ここで、S は水の密度 [kg/m³] であり、測定時の水温 にから求まる.

相対密度は、TiSi2、WSi2単体それぞれの理論密度とモル 分率を用いて、次式により複合体の理論密度®を求め、複合 体理論密度に対する嵩密度計測値の割合で示した.

$$\rho_{\rm TW} = \frac{M_{\rm T} f_{\rm T} + M_{\rm W} f_{\rm W}}{\frac{M_{\rm T}}{\rho_{\rm T}} f_{\rm T} + \frac{M_{\rm W}}{\rho_{\rm W}} f_{\rm W}} \qquad [\rm kg/m^3]$$
(2)

ただし、 ρ_{TW} は、複合体の理論密度、 ρ_{T} 、 M_{T} 、 f_{T} は、 それぞれ TiSi₂単体の理論密度(X 線密度 4043kg/m³)、 分子量、モル分率である.また、 ρ_{W} 、 M_{W} 、fw は、そ れぞれ WSi₂単体の理論密度(X 線密度 9857 kg/m³)、 分子量、モル分率である.なお、理論密度は、X 線密 度 η を基準として求めた.

硬度は,試験印加荷重 *P*を 9.8N(圧子質量 1kgf)とし てビッカース硬さを測定した.圧痕の対角線長さ *d*よ り(3)式を用いてビッカース硬さを算出した.

$$H_V = \frac{P}{S} = \frac{1.8544P}{d^2} \quad [Pa] \tag{3}$$

ここで, *H*v: ビッカース硬さ[Pa], *P*: 試験荷重[N], *S*: 圧痕の表面積[m²], *d*: 圧痕の対角線の長さの平均 [m]である.

曲げ強度(抗折強度)は JIS R 1601 の規格に沿って 3 点曲げ強度の測定を行った.スパン長は 17.9mm とし て曲げ破断荷重を測定し,曲げ強度を(4)式より求めた. なお,試験片は幅 4mm×厚さ 3mm,試験機のクロス ヘッドの送り速度は 0.5mm/min とした. (4)

$$\sigma_{b3} = \frac{3PL}{2wt^2} \qquad [Pa]$$

ここで, *o*b3:3点曲げ強度(抗折強度)[Pa], *P*:試 験片が破断したときの最大荷重[N], *L*:下部支点間距 離[m], *w*:試験片の幅[m], *t*:試験片の高さ[m]で ある.

また、上記の曲げ強度(抗折強度)試験と同時に、JIS R 1602[®]に従い、曲げ応力・ひずみ特性の直線比例部の傾き からヤング率を求めた.これを曲げ法によるヤング率と呼 ぶことにする.

破壊靭性は,SENB (Single Edge Notched Beam) 法 ⁹を用いて,応力拡大係数 *K*_{IC} の値を求めた.曲げ 試験片の中央に幅 0.15mm のダイヤモンドカッターを 用いてスリット(溝)を入れ,3 点曲げ試験をおこなっ た.抗折試験と同様に試験片が破壊するまでの最大荷 重を測定し,(5)式を用いて破壊靭性を求めた.

$$K_{IC} = \frac{3PL\sqrt{A}}{2wt^2}Y \quad \left[\operatorname{Pa} \cdot \mathrm{m}^{1/2}\right] \tag{5}$$

ここで, K₁c:破壊靭性 [Pa・m^{1/2}], P:試験片が破 壊したときの最大荷重[N], w:試験片の幅[m], t: 試験片の高さ[m], L:下部支点間距離[m](14.97mm), A:試験片のスリットの深さ[m], Y: A/t比率に依存す る係数(本実験条件の場合 1.7935)である.

ヤング率 E, 剛性率 Gおよびポアソン比 vは, 超音波パ ルス法 ®により測定した. 周波数 5MHz の縦波振動子およ び横波振動子を用いて, 石英ガラスの伝播速度を基準とし て縦波音速および横波音速を求め, (6)式, (7)式および(8)式 を用いてそれぞれ計算した.

$$E = \rho \frac{3V_t^2 \cdot V_l^2 - 4V_t^4}{V_l^2 - V_t^2}$$
 [Pa] (6)

$$G = \rho V_t^2 \quad [Pa] \tag{7}$$

$$\nu = 0.5 \frac{V_l^2 - 2V_t^2}{V_l^2 - V_t^2} \tag{8}$$

ただし、 ρ は嵩密度[kg/m³] 、 V_l : は縦波音速[m/s]、 V_l は 横波音速[m/s]である.

電気伝導度(抵抗率の逆数) σ は, 4 端子法(電圧降下法)¹⁰⁾ を用いて(9)式より求めた.

$$\sigma = \frac{l \cdot l}{S \cdot V} \quad [S/m] \tag{9}$$

ただし, *l*は電圧端子間距離 [m](17.0mm), *I*は電流端子 に直列に接続した直流電流計の読み[A], *S* は試料断面積 [m²], *V* は電圧端子間に並列に接続した直流電圧計の読み [V]である.

表面の組織は、試料を砕き、走査型電子顕微鏡(SEM)(日 立製CU3500型, Oxford Instruments 製 X-Max50型 EDS 装置付属)を用いて試料破面を観察した.結晶相と格子定数 は、Cu-Ka線を用いたX線回折法により求めた.

3. 結果

3-1 密度

図1に、TiSi₂からWSi₂まで20mol%ステップで組 成を変化させた系について、Ar 雰囲気中(雰囲気圧 1.2atm),温度1170~1670℃で40分間,プレス圧力 28.3MPaでホットプレス焼結した場合の,理論密度と 嵩密度測定値を示す.また、図2に、相対密度(理論密 度に対する嵩密度の比率)を示す.横軸パラメータは、 WSi₂含有量[mol%]で表した(他の図も同様).

理論密度は,組成の変化に従い,4043~9857kg/m³ まで一様に大きく変化したが,相対密度は,およそ93 ~95%が得られた.ただし,相対密度は,WSi₂が0お よび60%のときに低く,83~85%程度であった.機械 的特性は,基本的に相対密度に比例して変化するので, 機械的特性と併せて比較が必要である.

3-2 ビッカース硬度

図3に、ビッカース硬度の変化を示す. ビッカース 硬度は、TiSi2 組成で約 4.6GPa, WSi2 組成で約 14.7GPa, これらの複合組成で約 10.2~11.8GPa を示 した. 相対密度の変化に対応していると言える.

3-3 曲げ強及び最大ひずみ

図4に,曲げ強度(抗折強度)と曲げ試験時に試験片 にかかる最大ひずみの結果を示す.曲げ強度や最大ひ ずみは,硬度や相対密度に比例せず,TiSi2側で比較的

図1 TiSi2-WSi2系の理論密度および嵩密度

大きな値(251~266MPa, 0.096~0.137%)が得られた. WSi2を60, 80mol%を含む場合は低く,曲げ強度136 ~154MPa,最大ひずみ0.037~0.044%であった.

3-4 破壊靭性値

図5に,SENB法で求めた破壊靭性値 Kicの変化 を示す.Kicは,TiSi2~WSi2までの組成変化に対し, 1.83~3.28MPa・m^{1/2}と向上しているが,全体的に値 は低く,構造セラミックスとしての用途には,もう一 段,特性の改善が必要とされる.

3-5 ヤング率及び剛性率

図6に、ヤング率、剛性率の特性を示す. ヤング 率は、3-3節で示した曲げ試験法による曲げ応力-ひ ずみ特性の直線部勾配から求めた方法(曲げ試験法)と、 超音波の縦波および横波音速から求めた方法(超音波 法)の両方を示した.両者ともにほぼ同じ値で、測定法 による違いは認められなかった.曲げ試験法によるヤ ング率は、TiSi2で約170GPa,WSi2で約412GPaと 求まり、大きく変化した.硬度の変化や破壊靭性値の 変化に比例していた.超音波法で求めた剛性率は、69 ~186GPa程度であり、全組成にわたりヤング率の値 の50%以下であった.

3-6 縦波及び横波音速

図7に、5MHzの超音波インパルスに対する縦波 および横波音速を示す.縦波音速は、全体として約 7047~8159m/s,横波音速は、4457~4935m/sであり、

図3 ビッカース硬度

図4 曲げ強度及び最大ひずみ

図5 破壊靭性値(Kic)

図8 電気伝導度

鋼よりも大きく,セラミックス材料としては平均的な 値であった.

3-7 **電気伝導度**

図8に、4端子法で求めた電気伝導度を示す.電気 伝導度は、これまでの機械的特性とは異なり、純TiSi2 組成で5.24MS/m,純WSi2組成で6.13MS/mの高い 導電性を示し、複合組成、特にWSi2を40~80mol% 含む組成では、0.63~0.71MS/mと極端に低い値を示 した.複合組成では、結晶構造の乱れが多く存在して いるためと思われる.いずれの組成も、放電加工に必 要な電気伝導度(1S/m以上)は確保されている.

4. 考 察

4-1 組織観察

走査型電子顕微鏡により,材料の組織観察および組 成分析を行った.図9に組織観察した結果を示す. 組織観察より,WSi₂-0~40では緻密化が進み気孔量 が少なく(相対密度が高く),WSi₂-60~80では気孔量 が多く,緻密化が進んでいない.また,WSi₂-100で 若干緻密化が進んでいるように見受けられる.これを

図9 TiSi₂-WSi₂系試料の SEM 組織

表4 試料の組成分析結果

試料名	①理論元素濃度[mol%]			②分析元素濃度[mol%]			③分析元素濃度[mass%]		
	Si	Ti	W	Si	Ti	W	Si	Ti	W
WSi ₂ -0	66.67	33.33	0	65.72	34.28	0	52.92	47.08	0
WSi_2-20	66.67	26.67	6.67	65.52	28.73	5.76	43.05	32.19	24.76
WSi_2-40	66.67	20.00	13.33	65.34	22.09	12.57	35.27	20.33	44.41
WSi_2 -60	66.67	13.30	20.00	65.29	16.29	18.41	30.57	13.01	56.42
WSi_2-80	66.67	6.67	26.67	64.06	10.54	25.40	25.80	7.24	66.96
WSi ₂ -100	66.67	0	33.33	65.72	0	34.28	22.65	0	77.35

図2に示した相対密度と比較すると、WSi2-0の相対 密度が若干低いことを除けば、組織と相対密度はほぼ 対応していると言える.

WSi₂-20の試料には,花柄模様の組織が観察されたが,その詳細については,4-4節で取り扱う.

4-2 組成分析

表4に,主要元素の組成分析結果を示す.設定した TiSi2とWSi2のモル分率から算出した理論元素濃度 (①の欄)に対して,試料を作製後,エネルギー分散型 X線分析装置(X線マイクロアナライザ)を用いて分析 した元素濃度結果をモル分率(②の欄)および質量分率 (③の欄)で示した.表中のモル分率を比較すると,Si は若干減少,Tiはやや増加,Wはわずか減少する傾 向があるが,おおきな差異はなく,設定通りの組成で 試料が作製されていると言える.

4-3 Ti-W-Si 系化合物

Poletaev¹¹⁾や Biao Hu¹²⁾によると, Ti-Si 二元系に は, 化合物相が TiSi₂, TiSi, Ti₅Si₄, Ti₅Si₃, Ti₃Si の 5 相があり, W-Si 二元系には化合物相が W₅Si₃, WSi₂の 2 相がある.また, Ti-W-Si 系三元化合物に は, Ti₃W₂Si₁₀の 1 相が存在する.

図 10 に, TiSi₂-WSi₂系について Biao Hu¹²により 解析された状態図を示す.WSi₂含有量 13.3mot%(約 0.08~0.13mot)に Ti₃W₂Si₁₀相が存在し,本実験にお ける WSi₂-0~WSi₂-100 試料の実験該当条件を図上に 掲載すると,赤丸の点の列となる.WSi₂-0の試料は TiSi₂単相であるが,WSi₂-20 については,TiSi₂相と Ti₃W₂Si₁₀相の混合相となり,状態図上からは,TiSi₂ 相:Ti₃W₂Si₁₀相のモル比は約1:1と推定される. また,WSi₂-40では,単相Ti₃W₂Si₁₀となることが推 定される.

4-4 WSi2-20 試料の組成ライン分析

4-1節で示したように, WSi₂-20 試料において, 花柄模様の組織が現れたので,組成のライン分析を行った.図11に,その結果を示す.図中,組織上の黄 色い線に沿って電子線をスキャンし,電子線照射部か ら発生する特性 X 線を分析したところ,赤色で示す Si, 黄緑色で示す Ti,紫色で示すW元素が観察され た.花柄模様部ではWが多く観察されていることから

図10 TiSi₂-WSi₂系状態図と本実験条件

図11 WSi₂-20 試料の組成ライン分析

Ti-W-Si 系組織と推定される. この花柄模様部につい ては, Ti が 25at%, W が 10at%, Si が 65at%程度 含み,予想される結晶相の組成は約 Ti₅W₂Si₁₃とな る. 4-3節で述べたように,本試料は,状態図上は TiSi₂相と Ti₃W₂Si₁₀相のモル比 1:1 の混合相と推定 され,これから推定すると,花柄模様部は,Wを含 むので Ti₃W₂Si₁₀相に近い組成と推定される. 組成は 一致していないが,Ti₃W₂Si₁₀相は,組成の取れる範 囲に幅があるので,組成上の隔たりは生じやすい. 一方,花柄模様に挟まれた黒い部分については、W がほぼゼロ,Tiが多く含むことからTi-Si系組織と推 定される.このTi-Si系組織は、Siが65at%程度, Tiが35at%程度含むことから、TiSi2相であると推定 できる.

5. 総 括

TiSi₂から WSi₂まで 20mol%ステップで組成を変 化させた複合系について, Ar 雰囲気中(雰囲気圧 1.2 atm), 温度 1170~1670℃(組成により焼結温度を変 化)で 40 分間, プレス圧力 28.3MPa でホットプレス 焼結した場合について, 機械的および電気的特性を評 価したところ,以下のことが分かった.

- (1) 嵩密度は 3423~9347kg/m³,相対密度は 83.3~ 94.8%が得られた.特に嵩密度は WSi₂ 含有量に比 例して大きな値を示した.
- (2) 機械的特性として、ビッカース硬度 4.59~14.7 GPa を示し、TiSi2組成で極端に低かったが、他は 10GPa 以上を示した.曲げ強度 136~280MPa, 破壊靭性値 1.83~3.28MPa·m^{1/2}、ヤング率 170~ 412GPa、剛性率 69~186GPa を示し、構造セラミ ックスとしての用途には、さらに一段階の強化が必 要である.
- (3) 音響特性として,縦波音速は 7047~8159m/s, 横波音速 4457~4935m/s を示した.
- (4) 電気的特性として、電気伝導度は、0.63~
 6.13MS/mまで大きく変化した.純 TiSi2と純
 WSi2組成での電気伝導度は高く、これらの複合組
 成で、特に WSi2-40~WSi2-80 では、1MS/m 以下の低い値を示した.
- (5) 組織観察の結果, WSi2を60~100at%含む組成 で,気孔を多く含む組織が観察された.気孔量を減 らすことができれば,さらに機械的性質の向上が期 待できる.

参考文献

- 1) 日本新金属㈱編:技術資料「化合物の物性」,日本 新金属㈱(2022.3)
- S.Becker, A.Rahmel, M.Schütze: "Oxidation of TiSi₂ and MoSi", Solid State Ionics, Vol.53–56, Part 1, pp. 280-289(1992.7)

- 3) Guenter Schultes, Markus Schmitt, Dirk Goettel, Olivia Freitag-Weber: "Strain sensitivity of TiB₂, TiSi₂, TaSi₂ and WSi₂ thin films as possible candidates for high temperature strain gauges", Sensors and Actuators A, Vol.126, No.2, pp.287-291(2006.2)
- E.G. Colgan, J.P. Gambino, Q.Z. Hong: "Formation and stability of silicides on polycrystalline silicon", Materials Science and Engineering R16 Reports (A Review journal), pp.43-96(1996.2)
- R.Madar, C.Bernard: "Chemical vapour deposition of metal silicides in silicon microelectronics", Applied Surface Science, Vol. 53, pp.1-10(1991.11)
- 6) 中澤達夫,藤原勝幸,押田京一,服部忍,森山実:「電気・電子材料」,pp.138-144,コロナ社(2005.1)
- ゲ・ヴェ・サムソノフ、イ・エム・ヴィニツキー:「デー タブック高融点化合物便覧」, pp.12-124, 日ソ通信社 (1977.12)
- 8) 日本規格協会編:「JIS ハンドブック 35 セラミック ス JIS R 1602(1995)ファインセラミックスの弾性率 試験方法」, pp.320-326, 日本規格協会(2007.6)
- 9) 松野外男,若井史博,岡田正見,奥田博:高強度セラミ ックスのノッチドビーム法による破壊靱性. 窯業協会誌, Vol.90, No.5, pp.21-28(1982.5)
- 中澤達夫,藤原勝幸,押田京一,服部忍,森山実:「電気・電子材料」,pp.144-148,コロナ社(2005.1)
- D.O. Poletaev, D.A. Aksyonov, A.G. Lipnitskii: "Evolutionary search for new compounds in the Ti-Si system", Calphad(Computer coupling of Phase Diagrams and Thermochemistry), Vol.71, No.102201(2020.12)
- 12) Biao Hu, Jiaqiang Zhou, Yuting Meng, Peisheng Wang, Chengliang Qiu, Fanfei Min, Jingrui Zhao: "CALPHAD-type thermodynamic modeling of the Ti-W-B and Ti-W-Si refractory systems", International Journal of Refractory Metals and Hard Materials, Vol.81, pp.206-213(2019.6)