嫌気性消化槽における生理的活性のある微生物群集構造の解明

浅野憲哉*1·矢口淳一*2

Active Microbial Community in Anaerobic Digesters utilizing PMA (Propidium Monoazide)- and RNA-based 16S rRNA sequencing

ASANO Kenya and YAGUCHI Junichi

Propidium monoazide(PMA) reagent and RNA besides DNA were utilized to characterize the active microbial community of 5 full-scale anaerobic digesters via 16S rRNA amplicon sequencing. Beta diversity analysis showed PMA- and RNA-based sequencing caused a drastic change in the community composition and the relative abundance of microbial members, respectively, compared with DNA-based community profile. PMA- and RNA-based profiles indicated archaea belonging to *Methanosaeta* and bacteria belonging to *Bacteroidales* were physiologically active microorganisms in all anaerobic digesters. It was suggested *Treponema* and the W22 genus were viable in four mesophilic digesters.

キーワード:嫌気性消化,微生物群集, PMA, 16S rRNA, アンプリコンシーケンス解析

1. はじめに

嫌気性消化は、下水汚泥、家畜糞尿、食品廃棄物 などの有機性廃棄物を嫌気性条件下で分解し、メタ ン生成菌の働きによってバイオガスを回収してエネ ルギーとして利用するシステムである.下水汚泥に 関しては、現在約 300 ヶ所の下水処理場で嫌気性 消化施設が運転されている.消化槽内では,高分子 有機物の加水分解、揮発性脂肪酸の生成、脂肪酸か らの酢酸生成, 酢酸や水素からのメタン生成など多 様な微生物群による多段階のプロセスによって反応 が進行する.近年遺伝子解析技術の発展により,嫌 気性消化過程に関与するこれらの微生物群が明らか になってきた 1). しかし従来行われてきた研究は, DNA をベースとしていたため、死滅した活性のな い微生物と活性のある微生物の分別ができず、下水 汚泥の嫌気性消化槽では多数の好気性細菌が検出さ れる場合も見られた 1). そこで、本研究では微生物 細胞内の RNA や PMA(Propidium monoazide)試 薬を使用した方法 2)を利用して,死滅した活性の

- * 2020 年7月第57回下水道研究発表会で一部報告
- *1 工学科・都市デザイン系・教授
- *2 八戸工業高等専門学校・名誉教授
 原稿受付 2023年5月19日

ない微生物を除いて生理的活性のある微生物のみを 計測し,実際に嫌気性消化槽で働いている微生物群 を調査解析した.消化槽で活躍している主要な微生 物群が判明すれば,それらに適合した反応条件や環 境条件で運転操作することにより,嫌気性消化プロ セスにおけるメタン生成を効率化及び安定化させる ことができる.

2. 実験方法

2-1 消化汚泥

青森, 岩手県内の5つの下水処理場に設置された 嫌気性消化槽の消化汚泥を採取して実験に用いた. 表1にサンプリングした5つの嫌気性消化槽の概要 を示した. TB処理場の消化槽は55℃で高温消化を 行っており,残りの4つの処理場の施設は,35~ 41℃で中温消化を実施している.消化槽内の微生 物群に含まれる核酸を保存するため,消化汚泥は採 取後直ちに RNA-Later 試薬(Sigma-Aldrich)で処理 され,速やかに冷凍保存された. PMA 処理用の消 化汚泥は,窒素ガスで気相を置換した滅菌ピアーズ バイアルにシリンジで採取した.採取後低温保存し, 数時間以内に PMA 処理を行った.

2-2 PMA 処理

PMA 試薬として, PMAxx (Biotium, Inc)を使用

表1 調査した5つの嫌気性消化槽の概要

下水処理場	所在地	投入基質	消化温度(℃)	TSS濃度(mg/L)	採泥日
YE	青森県	下水汚泥	37	12800	2019.9.13
NT	青森県	下水汚泥	41	25800	2019.9.13
TB	青森県	下水汚泥	55	10900	2020.11.02
KT	岩手県	下水汚泥	35	11600	2020.01.07
TN	岩手県	下水污泥	35	7580	2020.01.07

した. 汚泥濃度が 1,000mg/L 以下になるように消 化汚泥を PBS (リン酸緩衝生理食塩水) で希釈し て 0.5mL の透明なマイクロチューブに準備し, PMAxx の最終濃度が 50µM となるように添加し て暗室で 5 分間放置した. その後, LED 光源 (タ カラバイオ (株), LED Crosslinker12 EM200) を 15 分間照射した³. PMA 処理した消化汚泥は PBS で 2 回洗浄して冷凍保存した.

2-3 DNAとRNAの抽出

サンプルからの DNA と RNA の抽出は, AllPrep DNA/RNA Kit (Qiagen)を用いて行った. PMA 処理及び未処理サンプルは,遠心分離して PBS で洗浄後,ガラスビーズ (M&S Instrument) と β -mercaptoethanol を添加した RTL Plus buffer(Qiagen)を含む滅菌ビーズチュー ブに全量移した.次にビードビーダーShakeMan6 (Biomedical Chemicals, 4350RPM, 60sec×2) で粉砕後,キットのプロトコールに従って DNA と RNA の抽出を行った. RNA の抽出では, RNasefree DNase Set(Qiagen)を使用して DNA を除去し た. 抽出した DNA と RNA は-80℃で冷凍保存した. 2-4 RNAの逆転写

逆転写反応には, ReverTra Ace®qRT-PCR KIT (TOYOBO)を使用した. 抽出した RNA の逆転写は 抽出後 2 日以内に実施した. RNA をインキュベー ト(65℃,5min)し, 氷上で急冷した後, PCR 装置の LifeECO (日本ジェネティクス(株))を用いてキッ トのプロトコルに従い, 逆転写反応を行った. RNA から生成された cDNA は-80℃で冷凍保存し た.

2-5 16S rRNA アンプリコンシーケンス解析

次世代シーケンサーによるアンプリコンシーケン ス解析は、16S rRNA 遺伝子の V3-V4 領域を対象 に(株) 生物技研に委託して実施した.プライマー セットには 341f_MIX と 805r_MIX を用い、2step tailed PCR 法でライブラリーを作成した.シーケ ンス解析は Miseq(Illumina)を使用して 2x300bp の条件で行い、使用プライマーと配列の読み始めが 完全に一致する配列のみを Fastx toolkit⁴⁾によって 抽出した.プライマー配列除去後、菌叢解析ツール Qiime2(ver. 2020.8)パイプライン⁵⁾を用いてキメラ 配列とノイズ配列を除去して代表配列を取得した. 取得した代表配列と Greengenes(ver.13_8)の 97% OTU(Operational Taxonomic Unit)を比較して系 統推定した. α 多様性と β 多様性の解析は, QIIME2 の diversity プラグインで行った.

3. 実験結果と考察

3-1 α 多様性解析

消化槽内の微生物群集構造の豊富さと均一性を示 すα多様性指数を表1に示した.各サンプルの希 薄化曲線より, α多様性解析のサブサンプリングは 19,126 リードとした. 観察された OTU 数は, DNA に基づく解析では TB 以外の4つの処理施設 の中温消化槽では 400~800 程度, TB 処理場の高 温消化槽で300未満であり、高温消化では消化槽 内の菌種が減少し、群集構造の豊富さを示す chao1 や faith_pd 指数からも多様性の減少が確認された. また PMA 処理汚泥や RNA を基準とした解析では, OTU 数, chao1, faith_pd の 3 つの指数とも DNA ベースの解析に比べて減少しており、消化槽中には 細胞膜が破損したり,細胞活性のない微生物群が数 多く存在することを表している.これらの指数の減 少率は TB 処理場で大きく, 高温消化では活性のな い微生物群の割合が高いことを示唆している. これ は阿部ら⁶⁾の報告とも一致している. PMA 処理し た消化汚泥と RNA ベースの解析結果を比較すると, KT 処理場を除いて 3 つの指数とも RNA ベースの 方が大きかった.

微生物群集構造の均等度を表す pielou_e と shannon 指数は,YE と TB 処理場の shannon 指 数を除いて 3 つの解析ともあまり変化しなかった. 3-2 微生物群集構造の変化

図 1 では各サンプル間の微生物群集構造を比較

表2 5つの消化汚泥に関する DNA, PMA, RNA ベースのα多様性解析結果

Index		ΥE			NT			ΤB			ΤN			KT	
	DNA	PMA	RNA												
observed OTUs	569	371	444	786	438	676	287	151	192	428	344	383	579	439	444
chao1	575	375	464	795	444	694	289	152	193	432	348	386	581	445	446
faith_pd	58.4	44.4	50.8	68.1	46.8	63.5	35.8	23.4	28.3	49.5	43.0	44.6	59.9	51.5	50.9
pielou_e	0.790	0.791	0.707	0.844	0.820	0.829	0.738	0.725	0.698	0.826	0.809	0.784	0.825	0.792	0.790
shannon	7.22	6.75	6.22	8.12	7.19	7.79	6.03	5.25	5.29	7.22	6.81	6.72	7.57	6.95	6.94

するため主座標分析 (β多様性解析)を行った. (a)図は、微生物群のリード数を考慮した定量的な Weighted UniFrac 解析, (b)図は微生物群の存在の 有 無 の み で 解 析 し た 定 性 的 な Unweighted UniFrac 解析結果である. どちらの解析でも高温 消化で運転している TB 処理場は他の 4 つの処理場 から遠く離れてプロットされており、微生物群集構 造が大きく異なっていることが分かる. (b)図の定 性的解析では、比較的高い温度で中温消化を行って いる NT 処理場の DNA と RNA の解析結果も他の 中温消化汚泥と離れてプロットされ, 微生物種が異 なることを示している. また各処理場とも定量的 解析では RNA ベースの解析が他の 2 つの解析結果 からかなり離れており、定性的解析では PMA 処理 汚泥が他の2つから離れてプロットされ、これらの 結果から PMA 処理では微生物の種類が, RNA によ るゲノム解析では微生物種より微生物群の存在割合 が DNA ベースの解析と比べて大きく変化している と考えられる.

3 つの解析によって実際に微生物構造がどのよう に変化したか調べるため、門レベルの微生物群集構 造を図 2 に示した. 図 2 にはいずれかのサンプル で相対存在比率の平均が 1%以上の微生物群をグラ フにまとめた. なお Proteobacteria については、 綱レベル(greengene データベースによる)を含めた. 微 生 物 叢 を 構 成 す る 主 要 な 門 と し て 、 Euryarchaeota, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, OP1, Synergistetes, Thermotogae, WWE1 が 検 出 さ れ 、 こ の う ち Thermotogae は特に高温消化の TB 処理場で存在 率が 10%以上となった. PMA 処理汚泥で相対存 在比率が大きく減少したのは Proteobacteria 門で、 特に Alphaproteobacteria と Betaproteobacteria 綱が減少しており、これは既往の報告^{6) 7)} と一致し ていた. また RNA のゲノム解析では、*Chloroflexi*、 と *Synergistetes* 門の微生物群の存在率が減少し、 *Euryarchaeota* 門に属する古細菌は大幅に増加し ていた. *Proteobacteria* に関しては、*Alphaproteobacteria* は PMA 処理と同様に減少した. *Betaproteobacteria* も 4 つの処理場では減少したが、KT 処理場のみ増加した.

3-3 PMAとrRNAによるメタゲノム解析

嫌気性消化槽で働く活性のある微生物群を 16S rRNA アンプリコンシーケンス解析で検出するた め、事前に PMA 試薬で消化汚泥を処理して DNA をメタゲノム解析する方法 677や rRNA を逆転写 して cDNA を解析する方法 ⁸⁾⁹⁾が試されてきたが, 両者を同時に実施して比較した研究はほとんど為 されていない. 最近 Liら 100は,4種の細菌の生細 胞と死細胞を様々に組み合わせて、DNA と RNA および PMA ベースでメタゲノム解析し、RNA に よる解析が生細胞の検出に最も有効であったこと を報告している. また Hiwaki and Yaguchi¹¹⁾は, 熱処理した下水に培養した 2 種類の腸内細菌を添 加して同様に 3 つのメタゲノム解析を行い, RNA ベースの解析がより的確に生存している細菌を検 出できたとしている. しかし, rRNA を用いたメ タゲノム解析は休眠細胞等の存在のため増殖速度 や活性度とは関係していないと従来から批判され ており 12),実際に嫌気性消化槽内の消化汚泥に RNAによるゲノム解析を適用した研究では多数の 好気性細菌が検出され⁸⁾⁹⁾, rRNA と rRNA 遺伝子 の比(rRNA/rDNA)で表した好気性細菌の微生物活 性は、消化される前の活性汚泥よりも消化汚泥で 高くなった⁸⁾.

(a) PCoA-PC1 vs PC2 (Weighted UniFrac)

(b) PCoA-PC1 vs PC2 (Unweighted UniFrac)

図1 主座標分析(β多様性解析)結果 (a) Weighted UniFrac 解析, (b) Unweighted UniFrac 解析

浅野憲哉・矢口淳一

図2 門レベルの微生物群集構造(Proteobacteria については綱レベル),相対存在率1%以上の微生物群

一方 PMA 試薬で前処理して DNA ゲノム解析 すると,直接 DNA を解析した場合と比べて微生物 叢に著しい変化が見られ,相対存在率が大きく減 少した微生物群は消化プロセスで分解されなかっ た残存微生物(residual populations)の死細胞と見 なされている⁶⁾⁷⁾. しかし最近 PMA ベースのメ タゲノム解析を検証した研究では,簡単な人工微 生物群集では半定量的に使用できるが,実際の複 雑な群集では定性的評価しかできないと指摘され ¹³⁾,前述の 3 つのゲノム解析を比較した研究結果 ^{10) 11)}を裏付けている.

このように生理的活性のある微生物群を検出する ための2つの方法とも限界があり、本研究でもそれ を踏まえて消化槽中で活性のある微生物群を推定す る必要がある.

3-4 生理的活性のある微生物群の推定

PMA 処理と RNA によるメタゲノム解析によっ て,属レベルで微生物群集構造がどのように変化し たか探索するため,図 3 に DNA ゲノム解析による 各属の相対存在比率と PMA と RNA ベースの解析 による存在比率との関係をそれぞれ示した. 3 つ の解析の何れかで相対存在率の平均が 1%以上とな った微生物群のみ解析し,図中には各処理場で構成 比が DNA による解析と比べて 2%以上増減する属 名を記した. また(a), (b), (c) 図にはそれぞれ NT, TB 及び TN 処理場の嫌気性消化槽における解析結 果を示した. PMA 処理では各処理場の消化槽で共 通して増減する微生物群はみられなかったが, RNA による解析ではメタン生成菌 *Methanosaeta* 属の 存在率が 5 つの消化槽とも大幅に増加し, DNA 解 析結果の 2~3 倍となった. これは図 4 に示した属 レベルの古細菌(相対存在率 0.5%以上)の微生物 群集構造でも確認でき, TB 処理場では存在率が 23. 6%に達した. 同様の傾向は他のメタン生成菌でも 認められ, 図 2 の RNA ベースの解析で増加した *Euryarchaeota* 門に属する古細菌は, *Methanosaeta* 属を始めとするメタン生成菌であることが分 かった.

TB 処理場の消化汚泥を解析した既報¹¹⁾では, PMA 処理汚泥で*Methanosaeta* 属の相対存在率が 大幅に低下し,汚泥サンプリング時に使用した RNA-Later による細胞膜の損傷が疑われたが,今回 RNA-Later を使用せずに PMA 処理した汚泥では DNA ベースの解析と存在率はあまり変わらなかっ た.*Methanosaeta* は酢酸資化性のメタン生成古細 菌として通常よく観察されているが, RNA メタゲ

ノム解析で存在率が大きく増加したという報告はい ままでない⁸⁾⁹⁾. PMA 処理では存在比率はあまり 変化せず,本研究で調査した 5 つの処理場の消化槽 では Methanosaeta 属のメタン菌が rRNA を大量

に生産して活性が高く、メタン生成に大きく寄与し ていると考えられる.下水汚泥の嫌気性消化では生 成したメタンの7割は酢酸経由だと報告されてい る¹⁴⁾.図4で観察されたメタン菌のうち酢酸から のメタン生成に関与しているのは*Methanosaeta* 属のみであり、RNAメタゲノム解析結果では構成 比が全メタン生成菌のおおよそ7割を占めている こととよく符合している.

また Bacteroidales 綱に属する微生物群は, すべ ての消化槽で3つのゲノム解析とも常に5.4~14. 5%の構成比を占め, 真正細菌では最も相対存在率 が高く, 消化槽中の主要な下水汚泥分解菌だと示さ れた. Bacteroidales 綱の微生物群は, 環境条件の 異なる様々な消化槽で主要な細菌群として検出され ており¹⁰¹⁵, PMA 処理した中温消化汚泥でも優占し ていた⁷⁰.

さらに調査した 4 つの処理場の中温消化槽では, Treponema 属と WWE1 門に含まれる W22 の微生 物群は3つの解析ともそれぞれ1.9~7.4%と2.1~ 6.6%の範囲の相対存在率を示し, PMA 処理や RNA によるゲノム解析でも存在率に大きな変化は なく、活性のある微生物群と考えられる. Treponema 属の細菌群は, H2 と CO2 から酢酸を合 成するホモアセトジェニック(homoacetogenic)細菌 として知られており16)、食品廃棄物と下水汚泥を処 理する南アフリカの嫌気性消化槽では調査した 7 つの処理施設すべてで検出された 17). 一方, WWE1 門の微生物群は、セルロースの加水分解に 関与していることが報告されているが¹⁸⁾, W22 の 微生物群の嫌気性消化槽における役割はよく分かっ ていない¹⁹⁾. Treponema 属の細菌群は、TB 処理場 の高温消化槽でも RNA ゲノム解析で存在率が大き く増加した.

次に生理的活性が低い 2 つの微生物群を示す. *Thermovirgaceae* 科に属する微生物群は, TB 処理 場を除くすべての中温消化槽で RNA ベースの解析

(相対存在率 0.5%以上)

による存在率が著しく低下していた. DNA のゲノ ム解析では 2.2~10.2%の構成比を占めていたが, RNA の解析ではすべて 0.3%以下となった. PMA 処理汚泥でも 3 つの消化槽で構成比は 2%以上減少 したが, TN 処理場のみ増加した. Thermovirgaceae 科に属する微生物群は,最近実験室規模の醤 油工場廃水を処理する低温 UASB リアクターで優 占種として報告されており,タンパク質やアミノ酸 分解に関与する遺伝子を有しているとされる²⁰⁾. しかし,本研究で解析した 4 つの中温消化槽では, RNA 解析の相対存在率から活性はかなり低く,汚 泥分解で活躍している微生物群とは考えられない.

Anaerolinaceae 科に属する T78 の微生物群も,4 つの中温消化槽で RNA 解析による存在率が大きく 低下している.T78 は実規模の汚泥消化槽で最も 優占する微生物群としていくつか報告がある²¹⁾²²⁾. また油や高級脂肪酸を分解する嫌気性消化槽でも最 も優占していた微生物群であるとも報告されている²³⁾.本研究では DNA ゲノム解析で 3.8~5.9%の存 在率を占め,PMA 処理でもほとんどその存在率は 変化しなかったが,RNA による解析では 0.77~ 2.0%まで低下し,従来報告されていたほど中温消化 槽で働いている主要な微生物群とは考えられない.

高温消化を行っている TB 処理場の消化槽につい ては図 3 の(b)に見られるように, Coprothermobacter 属と WWE1 門に属する W5 属の微生物群は, RNA ベースの解析で存在率が大きく低下していた. 阿部ら ⁶⁾は PMA ベースの解析から高温消化の主要 な微生物群である報告したが,活性は高いとは考え られない. 一方 Thermotogaceae 科に属する Fervidobacterium 属の微生物群は, 3 つの解析とも 存在率が 10%以上となり,この消化槽で働く主要な 微生物群であると推定された. これらの結果は TB 処理場の消化槽を調査した既報の結果¹¹⁾とも一致 した.

4. まとめ

本研究では、PMA 試薬とRNA ベースのメタゲノ ム解析を使用して DNA ベースの解析結果と比較す ることにより、下水汚泥を嫌気性消化している 5 つ 消化槽の微生物群集構造を解析した.微生物群集の β 多様性解析により、PMA 処理では微生物の種類 が、また RNA によるゲノム解析では微生物種より 微生物群の存在割合が DNA ベースの解析と比べて 大きく変化したことが知られた.PMA と RNA を 用いた解析から、*Methanosaeta* 属と *Bacteroidales* 綱に属する微生物群は 5 つの下水処理場のすべて の消化槽で活発に働く微生物群であると推定された. また *Treponema* 属と WWE1 門に含まれる W22 の 微生物群は,4 つの中温消化槽で活性を維持してい る微生物群であると考えられた.

謝辞:本研究を行うにあたり,八戸工業高等専門学 校産業システム工学科環境都市・建築デザインコー ス学生(当時)一戸佳乃さんと下屋敷豊君にご協力 いただきました.また消化汚泥のサンプリングでは 自治体及び下水処理場の関係者の皆様にご支援,ご 協力を賜りました.ここに記して深く感謝申し上げ ます.

参考文献

- Mei, R., Nobu, M.K., Narihiro, T., Kuroda, K., Muñoz Sierra, J., Wu, Z., et al.: Operation-driven heterogeneity and overlooked feed-associated populations in global anaerobic digester microbiome. Water Research 124: 77–84 (2017) https://doi.org/10. 1016/ j. waters.2017.07.050
- キ田昭彦, 堀知行, 久保田健吾, 栗栖太, 春日郁朗, 金田一智規, 伊藤司:水処理システムの微生物群 の全容を診る解析技術の進展, 45(3), 91-105 (2022)
- Ruike, W., Higashimori, A., Yaguchi, J., Li, Y.: Use of real-time PCR with propidium monoazide for enumeration of viable Escherichia coli in anaerobic digestion/ Water Scence & Technology, 74(5), 1243-1254 (2016)
- Hannon lab: FASTX-Toolkit (http://hannonlab.cshl. edu/fastx toolkit/index.html)
- Bolyen, E., Rideout, J. R., Dillon, M. R. et al.: Reproducible, interactive, scalable and extensiblemicrobiome data science using QIIME 2, Nat. Biotechnol., 37, 852–857 (2019) https://doi.org/10.1038/s41587-019-0209-9
- 阿部天磨, 佐藤幹子, 矢口淳一, 李玉友, 久保田健 吾:PMA-PCR法を用いた高温嫌気性消化汚泥の 微生物群集構造の解明. 土木学会論文集G(環境), 77, III 103-III 109(2021)
- 7) Ni, J., Hatori, S., Wang, Y., Li, Y., Kubota, K.: Uncovering Viable Microbiome in Anaerobic Sludge Digesters by Propidium Monoazide (PMA)-PCR Microb Ecol., 79(4), 925-932 (2020) https://doi.org/ 10.1007/s00248-019-01449-w
- Mei, R., Narihiro, T., Nobu, M.K., Kuroda, K., Liu, W.T.: Evaluating digestion efficiency in full-scale

anaerobic digesters by identifying active microbial populations through the lens of microbial activity. Sci. Rep., 6, 1–10 (2016) https://doi.org/10.1038/srep 34090

- 9) Vrieze, J. D., Pinto, A.J., Sloan, W. T., Ijaz, U. Z.: The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome, 6:63 (2018) https://doi: 10.1186/s40168-018-0449-9.
- 10) Li, R., Tun, H., M., Jahan, M., Zhang, Z., Kumar, A., W. G. Fernando, D., Farenhorst, A., Khafipour, A.: Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci. Rep., 7, 5752 (2017) https:// doi.org/10.1038/s41598-017-02516-3
- Hiwaki, R., Yaguchi, J.: Evaluation of method utilizing 16S rRNA amplicon sequencing for analysis of live bacterial community. Memoirs of National Institute of Technology (Kosen), Nagano College, 55 1-1 (2021)
- 12) Blazewicz, S.J., Barnard, R.L., Daly, R.A., Firestone, M. K.: Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J., 7, 2061–2068(2013) https://doi.org/10.1038/ismej.2013.102
- 13) Wang, Y., Yan, Y., Thompson, K. N., Bae, S., Accorsi, E. K., Zhang, Y., Shen, J., Vlamakis, H., Hartmann, E. M., Huttenhower C.: Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. Microbiome, 9:17 (2021) https://doi.org/10.1186/ s40168-020-00961-
- 14) Jeris, J. S., McCarty, P. L.: The biochemistry of methane fermentation using 14C tracers, J. Water Pollut. Control Fed., 37, 178 (1965)
- 15) Zeng, T., Hu, Q., Rene, E. R., Rene, Lens, P. N. L.: Microbial community and extracellular polymeric substances analysis of anaerobic granular sludge exposed to selenate, cadmium and zinc. Microbial Biotechnology, 16, 463-473 (2023) https://doi.org/ 10.1111/1751-7915.14187
- 16) Zhang, Q, Wang, M., Ma, X., Gao, Q., Wang, T., Shi, X.: High variations of methanogenic microorganisms drive full-scale anaerobic digestion process. Environment Inter., 126, 543–551 (2019) <u>https://doi.org/10.1016/j.envint.2019.03.005</u>

- 17) Sposob, M., Moon, H., Lee, D., Yun, Y.: Microbiome of Seven Full-Scale Anaerobic Digestion Plants in South Korea: Effect of Feedstock and Operational Parameters. Energies 14, 665 (2021) https://doi.org/10.3390/en14030665
- 18) Limam, R.D., Chouari, R., Mazeas, L., Wu, T., Li, T, Grossin-Debattista, J., Guerquin-Kern, J., Mouldi Saidi, M., Landoulsi, A., Sghir, A., Bouchez, T. : Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose. MicrobiologyOpen, 3(2), 157–167 (2014) https://doi: 10.1002/mbo3.144
- 19) Jiang, Y., Dennehy, C., Lawlor, P.G., Hu, Z., McCabe, M., Cormican, P., Zhan, X., Gardiner, G.E.: Exploring the roles of and interactions among microbes in dry co-digestion of food waste and pig manure using high-throughput 16S rRNA gene amplicon sequencing. Biotechnol Biofuels, 12:5 (2019) https://doi.org/10.1186/s13068-018-1344-0
- 20) Gao, M., Guo, B., Zhang, L., Zhang, Y., Liu, Y: Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater. Water Research, 160, 249 e258 (2019) https://doi.org/10.1016/j.watres. 2019. 05.077
- 21) Petriglieri, F., Nierychlo, M., Nielsen, P.H.,McIlroy, S.J.: In situ visualisation of the abundant *Chloroflexi* populations in full-scale anaerobic digesters and the fate of immigrating species. PLoS ONE, 13(11), e0206255 (2018) https://doi.org/10.1 371/journal.pone.0206255
- 22) Bovio-Winkler, P., Cabezas, A., Etchebehere, C.: Database Mining to Unravel the Ecology of the Phylum Chloroflexi in Methanogenic Full Scale Bioreactors. Frontiers in Microbiology, 11, 603234 (2021) https//doi: 10.3389/fmicb.2020. 603234
- 23) Nakasaki, K., Nguyen, K. K., Ballesteros Jr, F.C., Maekawa, M., Koyama, M.: Characterizing the microbial community involved in anaerobic digestion of lipid-rich wastewater to produce methane gas. Anaerobe, 61, 102082 (2020) https://doi.org/10.1016/j. anaerobe.2019. 10208