曲げをうける鋼 I 形断面の塑性限界

幅厚比に関する研究(第3報)

永藤壽宫*·羽田政浩**

A Analytic Study Of Plastic Limiting Width-Thickness Ratios Of Steel I-Sections In Bending(Third Report)

Toshimiya NAGATO ,Masahiro HANEDA

The definition and classification of cross-sectional strength concerning width-thickness ratio of plate element are required in the development of advanced limit state design code of steel structures.

For regarding the limiting width-thickness ratios for plastic strength of steel I-section in bending , Various cross-sectional Strength is calcurated by the analysis of F.E.M.under same conditions(b/h=const, Aw/Af=const). In third report, those numerical results are shown in detail and current design codes are discussed.

キーワード: 弾塑性耐荷力,有限変位,I形断面ばり,部材力学特性

1.緒 言

現在の道路橋示方書を力学条項の拠り所として いる『鋼構造物設計指針』¹⁾は、鋼構造一般の設 計に用いるので、道路橋以外の構造物には安全側 に偏ってしまう傾向にありいかに述べる規定につ いては修正を必要としている。

 1)断面構造板要素の幅厚比に関しては、塑性設 計限界幅厚比、塑性限界幅厚比及び、降伏限界幅
厚比の規定。

2)部材座屈に関する細長比に対しては、塑性設 計限界細長比とそ制限かい細長比の規定ただし塑 性限界細長比は、中厚肉断面部材にたいしては、 降伏限界細長比とする。

そこで、本研究では、3次元弾性有限変位プロ グラムを用いた数値解析により現行の許容応力度 設計法において強度の基準となっている初期降伏 強度から終局強度までの挙動特性を明らかにし、 各種の部材が終局強度にたいして、一様な安全性 を確保できるように力学条項を整えるとともに必

* 東日本鉄工株式会社

要な板要素の幅厚比の塑性限界について検討した 前回に続き、今回の報告は、より詳細に断面積比 や板厚を一定としてその数値モデルを選択した。

2. 解析モデルの選定

2-1 構造区分5)

骨組構造物の構造区分は部材断面の局部座屈に 関する幅厚比パラメーターと部材の細長比パラメ ーターに応じて分けられる。図-1では最も詳細 な構造区分を模式的に表している。各区分に対し て適用される構造解析法及び強度照査法をまとめ ると以下の通りである。

- 領域1:極厚肉断面のストッキーな部材によ り構成された構造で、塑性解析(塑 性設計法)の適用が可能な領域。
- 領域2:厚肉断面のストッキーな部材により 構成された構造で、構造解析は弾性 解析によるが断面の塑性強度につい

^{*} 環境都市工学科助教授

原稿受付 1998 年 10 月 31 日

て照査する。

- 領域3:厚肉断面のスレンダーな部材に構成 された構造で、安定照査式と塑性断 面強度について照査する。構造解析 は弾性解析による。
- 領域4:中厚肉断面のストッキーな部材で構 成された構造物で、断面強度は降伏 強度にとる。構造解析は弾性解析に よる。
- 領域5:中厚肉断面のスレンダーな部材で構 成された構造物で、部材の強度につ いては安定照査式と降伏強度で照査 する。構造解析は弾性解析による。
- 領域6:薄肉断面のストッキーな部材で構成 された構造物で、局部座屈強度を照 査する。構造解析は弾性解析による。
- 領域7:薄肉部材のスレンダーな部材で構成 された構造物で、部材座屈と局部座 屈の連成強度を照査する。構造解析 は弾性強度による。

断面構成板要素の限界幅厚比として塑性設計限界 幅厚比、塑性限界幅厚比及び降伏限界幅厚比の3 種類を規定することになる。その際に本研究では 板要素間の相互拘束効果を考慮して断面としての 限界幅厚比を与えると考えた。曲げを受けるI形 断面の限界幅厚比は代表的設計基準では、表-1 のように与えられている。その基準の塑性限界の フランジの幅厚比パラメータ入pfウェブの幅厚比 パラメータ入pwを平面上に描くと図ー2のように なる。板要素の個々に限界幅厚比を与えると長方 形の領域で断面強度の区分が表せる。

フランジ幅厚比パラメータ:

$$\overline{\lambda}_{pf} = \frac{b'}{t_f} \sqrt{\frac{12(1-v^2)\sigma_r}{k_f \pi^2 E}}$$

ウェブ幅厚比パラメータ:

$$\overline{\lambda}_{PW} = \frac{h}{t_{w}} \sqrt{\frac{12 (1 - v^{2}) \sigma_{y}}{k_{w} \pi^{2} E}}$$

h:ウェブ高, b:フランジ高, b':フランジ突 出幅, t_w:ウェブ高, t_f:フランジ高, σ_y:降伏 応力度, L:1波長, A_w:ウェブ断面積, A_f:フ ランジ断面積, k:形状係数, M_y:降伏モーメン ト

日本建築学会の基準のみ楕円状の断面強度区分となっている。

計画したモデルの幅厚比パラメータの範囲は、

Member slenderness λ_m or l/r図-1 構造区分

~				
設計基準	Limiting Slenderness Ratio			
	フランジ λ _{pf}	ウェブ λ _{pw}		
AISC	0.613	0.809		
LRFD	0.613	0.809		
AIJ PR	*	*		
AASHTO	0. 476	0. 531		
CSA	0.603	0.657		
BS5400	0.466	0.5		
DIN18800	0. 597	0.742		
SIA161	0. 722	0.645		

表-1 各国スペック限界幅厚比

*Interaction formula of F.L.B. and W.L.B.

図-2 代表的設計基準の塑性限界 表-2 数値モデル寸法と力学パラメータ

*0.5(NO.1)

.0.0							
No.	h	tf	tw	b	L	λpw	λpf
55	30.000	1.900	0.475	12.000	27.000	0.501	0.180
56	32.000	1.900	0.475	12.800	28.800	0.534	0.193
57	34.000	1.900	0.475	13.600	30.600	0.567	0.205
58	36.000	1.900	0.475	14.400	32.400	0.601	0.218
59	38.000	1.900	0.475	15.200	34.200	0.634	0.230
60	40.000	1.900	0.475	16.000	36.000	0.667	0.243
*0.6	(NO.2)	L				<u> </u>	
No.	н	tf	tw	b	L	λpw	λpf
55	40.000	1.900	0.475	24.000	54.000	0.667	0.368
56	42.000	1.900	0.475	25.200	56.700	0.701	0.387
57	44.000	1.900	0.475	26.400	59,400	0.734	0.406
58	46.000	1.900	0.475	27.600	62,100	0.768	0.424
59	48.000	1.900	0.475	28.800	64.800	0.801	0.443
60	50,000	1,900	0.475	30.000	67.500	0.834	0.462
*0.7	(NO.3)						
No	н	+f	tw	h	1	2	λnf
55	34 000	1 000	0.475	23 800	53 550	0.567	0.265
56	36.000	1 000	0 475	25 200	56 700	0.007	0.303
50	30.000	1 000	0.475	26.600	50.700	0.001	0.307
57	40.000	1.900	0.475	20.000	62,000	0.034	0.409
50	40.000	1.900	0.475	20.000	66 150	0.007	0.451
59	44.000	1.900	0.470	20.000	60 200	0.701	0.452
*0.0	44.000 (NO 4)	1.300	0.475	30.800	09.300	0.734	0.474
±0.0		15	.			<u> </u>	<u>, ,</u>
110.	n	11	TW	D	L	A pw	A pt
55	32.000	1.900	0.475	25.600	57.600	0.534	0.393
56	34.000	1.900	0.475	27.200	61.200	0.567	0.418
5/	35.000	1.900	0.475	28.800	64.800	0.601	U.443
58	38.000	1.900	0.475	30.400	68.400	0.634	0.468
59	40.000	1.900	0.475	32.000	72.000	0.667	0.493
60	42.000	1.900	0.475	33.600	75.600	0.701	0.518
*0.9	(NO.5)			,			
No.	h	tf	tw	b	L	λpw	λpf
55	26.000	1.900	0.475	23.400	52.650	0.434	0.359
56	28.000	1.900	0.475	25.200	56.700	0.467	0.387
57	30,000	1.900	0.475	27.000	60.750	0.501	0.415
58	32.000	1.900	0.475	28.800	64.800	0.534	0.443
59	34.000	1.900	0.475	30.600	68.850	0.567	0.471
60	36.000	1.900	0.475	32.400	72.900	0.601	0.499
*1.0	(NO.6)						
No.	h	tf	tw	b	L	λpw	λpf
55	22.000	1.900	0.475	22.000	49.500	0.367	0.337
56	24.000	1.900	0.475	24.000	54.000	0.400	0.368
57	26.000	1.900	0.475	26.000	58.500	0.434	0.399
58	28.000	1.900	0.475	28.000	63.000	0.467	0.431
59	30.000	1.900	0.475	30.000	67.500	0.501	0.462
60	32,000	1.900	0.475	32.000	72,000	0.534	0.493
	22.000			22.000	/ 2.000	5.504	0.400

*1.1(NO.7)

71.1	(10.7)						
No.	h	tf	tw	b	L	λpw	λpf
55	22.000	1.900	0.475	24.200	54.450	0.367	0.371
56	24.000	1.900	0.475	26.400	59.400	0.400	0.406
57	26.000	1.900	0.475	28.600	64.350	0.434	0.440
58	28.000	1.900	0.475	30.800	69.300	0.467	0.474
59	30.000	1.900	0.475	33.000	74.250	0.501	0.509
60	32.000	1.900	0.475	35.200	79.200	0.534	0.543
*1.2	(NO.8)						
No.	h	tf	tw	b	L	λpw	λpf
55	20.000	1.900	0.475	24.000	54.000	0.334	0.368
56	22.000	1.900	0.475	26.400	59.400	0.367	0.406
57	24.000	1.900	0.475	28.800	64.800	0.400	0.443
58	26.000	1.900	0.475	31.200	70.200	0.434	0.481
59	28.000	1.900	0.475	33.600	75.600	0.467	0.518
60	30.000	1.900	0.475	36.000	81.000	0.501	0.556
*1.3	(NO.9)	•	·	·	·	<u></u>	•
No.	h	tf	tw	b	L	λpw	λpf
55	20.000	1.900	0.475	26.000	58.500	0.334	0.399
56	22.000	1.900	0.475	28.600	64.350	0.367	0.440
57	24.000	1.900	0.475	31.200	70.200	0.400	0.481
58	26.000	1.900	0.475	33.800	76.050	0.434	0.521
59	28.000	1.900	0.475	36.400	81.900	0.467	0.562
60	30.000	1.900	0.475	39.000	87.750	0.501	0.603
*1.4	(NO.10)			L	L	<u> </u>	<u>.</u>
No.	h	tf	tw	b	L	λpw	λpf
55	16.000	1.900	0.475	22.400	50,400	0.267	0.343
56	18.000	1.900	0.475	25.200	56,700	0.300	0.387
57	20.000	1.900	0.475	28.000	63.000	0.334	0.431
58	22.000	1.900	0.475	30,800	69.300	0.367	0.474
59	24.000	1.900	0.475	33.600	75.600	0.400	0.518
60	26.000	1.900	0.475	36.400	81.900	0.434	0.562
*1.5	(NO.11)	<u>_</u>	<u>_</u>	<u></u>	•		
No.	h	tf	tw	b	L	λow	λpf
55	18,000	1.900	0.475	27.000	60,750	0.300	0.415
56	20,000	1.900	0.475	30,000	67,500	0.334	0.462
57	22.000	1.900	0.475	33.000	74 250	0.367	0.509
58	24,000	1.900	0.475	36,000	81,000	0.400	0.556
59	26.000	1,900	0.475	39.000	87.750	0.434	0.603
60	28.000	1.900	0.475	42.000	94,500	0.467	0.650
*1 6	(NO 12)					5	5,000
No	(110.12)	+£	+147			1	l of
55	22 000	1 000	0 475	25 200	L 70.200	7. pw	0.542
50	24.000	1.900	0.475	39.200	19.200	0.307	0.543
57	26.000	1 000	0.475	41 600	00.400	0.400	0.593
58	20.000	1.000	0.475	44.000	100.000	0.434	0.043
00	- 7 X II II II						
50	30,000	1.900	0.475	44.800	108.000	0.407	0.093
59 60	30,000	1.900	0.475	44.800	100.800	0.501	0.743

表 – 2	数値モデル寸法と力学パラメータ(続き)	
*2.0(NO	13)	

No.	h	tf	tw	b	L	λpw	λpf
55	12.000	1.900	0.475	24.000	54.000	0.200	0.368
56	14.000	1.900	0.475	28.000	63.000	0.234	0.431
57	16.000	1.900	0.475	32.000	72.000	0.267	0.493
58	18.000	1.900	0.475	36.000	81.000	0.300	0.556
59	20.000	1.900	0.475	40.000	90.000	0.334	0.618
60	22.000	1.900	0.475	44.000	99.000	0.367	0.681
*2.5	(NO.14)						
No.	h	tf	tw	b	L	λpw	λpf
55	12.000	1.900	0.475	30.000	67.500	0.200	0.462
56	14.000	1.900	0.475	35.000	78.750	0.234	0.540
57	16.000	1.900	0.475	40.000	90.000	0.267	0.618
58	18.000	1.900	0.475	45.000	101.250	0.300	0.696
59	20.000	1.900	0.475	50.000	112.500	0.334	0.775
60	22.000	1.900	0.475	55.000	123.750	0.367	0.853
*3.0	(NO.15)						
No.	h	tf	tw	b	L	λpw	λpf
55	12.000	1.900	0.475	36.000	81.000	0.200	0.556
56	14.000	1.900	0.475	42.000	94.500	0.234	0.650
57	16.000	1.900	0.475	48.000	108.000	0.267	0.743
58	18.000	1.900	0.475	54.000	121.500	0.300	0.837
59	20.000	1.900	0.475	60.000	135.000	0.334	0.931
60	22.000	1.900	0.475	66.000	148.500	0.367	1.025
*3.5	(NO.16)						
No.	h	tf	tw	b	L	λpw	λ pf
55	6.000	1.900	0.475	21.000	47.250	0.100	0.321
56	8.000	1.900	0.475	28.000	63.000	0.133	0.431
57	10.000	1.900	0.475	35.000	78.750	0.167	0.540
58	12.000	1.900	0.475	42.000	94.500	0.200	0.650
59	14.000	1.900	0.475	49.000	110.250	0.234	0.759
60	16.000	1.900	0.475	56.000	126.000	0.267	0.869
*4.0	(NO.17)						
No.	h	tf	tw	b	L	λpw	λpf
55	4.000	1.900	0.475	16.000	36.000	0.067	0.243
56	6.000	1.900	0.475	24.000	54.000	0.100	0.368
57	8.000	1.900	0.475	32.000	72.000	0.133	0.493
58	10.000	1.900	0.475	40.000	90.000	0.167	0.618
59	12.000	1.900	0.475	48.000	108.000	0.200	0.743
60	14.000	1.900	0.475	56.000	126.000	0.234	0.869
*4.5	(NO.18)			·			
No.	h	tf	tw	b	L	λρw	λpf
55	2.000	1.900	0.475	9.000	20.250	0.033	0.133
56	4.000	1.900	0.475	18.000	40.500	0.067	0.274
57	6.000	1.900	0.475	27.000	60.750	0.100	0.415
58	8.000	1.900	0.475	36.000	81.000	0.133	0.556
59	10.000	1.900	0.475	45.000	101.250	0.167	0.696
60	12.000	1.900	0.475	54.000	121.500	0.200	0.837
*5.0	(NO.19)				·		
No.	h	tf	tw	b	L	λpw	λpf

55	2.000	1.900	0.475	10.000	22.500	0.033	0.149
56	4.000	1.900	0.475	20.000	45.000	0.067	0.305
57	6.000	1.900	0.475	30.000	67.500	0.100	0.462
58	8.000	1.900	0.475	40.000	90.000	0.133	0.618
59	10.000	1.900	0.475	50.000	112.500	0.167	0.775
60	12.000	1.900	0.475	60.000	135.000	0.200	0.931
	(110.00)						

*5.5(NO.20)

No.	h	tf	tw	b	L	λpw	λpf
55	2.000	1.900	0.475	11.000	24.750	0.033	0.165
56	4.000	1.900	0.475	22.000	49.500	0.067	0.337
57	6.000	1.900	0.475	33.000	74.250	0.100	0.509
58	8.000	1.900	0.475	44.000	99.000	0.133	0.681
59	10.000	1.900	0.475	55.000	123.750	0.167	0.853
60	12.000	1.900	0.475	66.000	148.500	0.200	1.025

M/Mp=1.0

No.	λpw	λpf
0.4	0.640	0.232
0.5	0.655	0.300
0.6	0.670	0.370
0.7	0.713	0,460
0.8	0.688	0.509
0.9	0.617	0.513
1	0.558	0.517
1.1	0.508	0,516
1.2	0.482	0.509
1.3	0.451	0.542
1.4	0.424	0.542
1.5	0.401	0.556
1.6	0.380	0.563
2	0.319	0.590
2.5	0.265	0.614
3	0.229	0.638
3.5	0.198	0.641
4	0.172	0.638
4.5	0.150	0.626
5	0.131	0.606
5.5	0.085	0.429

ほぼ全ての設計基準塑性限界幅厚比の範囲を包含す るように決定した。第2報に供試体の寸法及び力学 パラメータを掲げる。表中の記号は以下に示された 通りである。また、表中の記号におけるLは道路橋 示方書で規定されている横倒れ座屈強度限界の1/2 の長さ(L=2.25b)またはウェブ高(L=H) とし断面強度の低いほうを用いた。極限強度に大き な影響を与える要因のひとつである(フランジの断 面積:Arとウェブの断面積:Aw)フランジとウェ ブの断面積比およびフランジ幅:bとウェブ高:h のアスペクト比のふたつがあげられる。

フランジとウェブの断面積比を無作為に決め計 算を行った結果は、図-9 である。フランジとウ ェブの断面積比を一定として b,h,t_{f},t_{w} の値を無作 為に決め計算を行った。計算結果は図-10 である。 表-2はフランジとウェブの断面積比を一定とし て今度は t_{f} , t_{w} の値を固定し、bとhの比率(b/ h)を 0.5 きざみで 0.5 から 4.5 まで計算を行 った。計算結果は図-11 である。

(図9~図10の断面寸法は第2報参照のこと)

3. 解析における仮定

3-1 材料特性

材料特性はSS400を使用し、表-3に示す データを用いる。このデータは、種々の材料試験 結果をもとに実測値に近いデータを用いた。

3-2 応力-ひずみ関係

ひずみ硬化を考慮した3次元有限変位プログラ ムを用いる際、ひずみ硬化域での応力-ひずみ関 係をどの様に考えるかが問題である。本研究では 既存の研究を参考にして次式および

表-3 入力材料データ

E	G	ν	σ,	В
2.10E06	8.10E05	0.3	2.85E03	0.4876
n	ε _h	ε _t	k f	k w
0.268	0.0211	0.211	0.425	23.9
E:ヤング	係数	n : ひず	や硬化指数	<u>x</u>
G: せん断	i弾性係数	٤ _h : ٣	ずみ硬化開	始ひずみ
ν:ポアソ	ン比	ει:破	断ひずみ	
σ _y :降伏	応力度	k _f : 7	フランジ座店	畐係数
B:ひずみ	硬化係数	k _w :ウ	'エブ座屈仰	系数

図ー3 応力ひずみ関係図

57

踊り場 ($\epsilon_y \leq \epsilon < \epsilon_h$) ······ $\sigma / \sigma_y = 1.0$ ひずみ硬化域 ($\epsilon \geq \epsilon_h$)

$$\sigma / \sigma_{\rm Y} = B (\epsilon / \epsilon_{\rm Y})^{\rm n}$$

ここに、

- σ :降伏応力 (kg f/cm²)
- ε:降伏ひずみ
- ε:ひずみ硬化開始ひずみ

B:ひずみ硬化係数, n:ひずみ硬化指数

3-3初期不整

図-4、図-5に示すように、残留応力および 初期たわみの最大値は溶接 | 形断面の実測データ の平均値³⁾を用いた。また初期たわみの波形は、 圧縮フランジは直線に、引張りフランジは初期た わみを無しとし、ウェブは一端固定、他端単純支 持のはりの座屈モードと同じ波形とした。

4. 解析法

4-1メッシュ分割

本研究では、解析モデルを弾塑性解析を行うた めのデータ作成には、オートメッシュ(自動分割) プログラムを作成し、利用した。その分割の結果 は図-6に示す。その際サブ要素として、板厚方 向に5分割してそれぞれの要素の断面の応力状態 も明確にした。

4-2弾塑性解析

オートメッシュプログラムで得られたデータを 用いて、3次元弾塑性有限変位プログラム

(NAPLAT)を使用し、それにおいて表の各モデル を計算した。3次元弾塑性有限変位プログラムの フローチャートは図-7に示す。このプログラム は、非適合(C^o級適合)一定ひずみ平面三角形要 素による立体薄肉構造のための弾塑性有限変位解 析プログラムであり、有限要素法の基本3原則で ある。

①変位適合条件

②材料構成則

③力のつり合い条件

を考慮し、このプログラムにおいて種々の仮定を 行った。

①変位適合条件

d=f(x,y): 変位関数

=Fa

このプログラムでは、

 $u = a_1 + a_2 x + a_3 y$

 $v=a_4+a_5x+a_6y$

 $w=a_{b1}+a_{b2}L_1+a_{b3}L_2+a_{b4}L_1L_2+a_{b5}L_2L_3+a_{b6}L_3L_1+a_{b7}(L_1L_2^{2-}L_2L_1^{2})+a_{b8}(L_2L_3^{2-}L_3L_2^{2})+a_{b9}(L_3L_1^{2-}L_1L_3^{2})$

(1)

曲げをうける鋼I形断面の塑性限界幅厚比に関する研究(第3報)

ds=Fa (2)(1) (2) 式より d=Nds (3)N:形状係数 一方ひずみと変位の関係より平面保持の仮定か ĥ ←Kirchhoff-Loveの仮定 (4) ε =Cd (3) (4) 式より $ε = Bd_e$ →有限要素内でひずみは一定分布、 即ち一定ひずみ要素 (5)②材料構成則 (6) σ =D ε 平面応力状態における弾性の剛度マトリックス $D_{-} = E /(1)$ 0 ←平面応力問題 板厚が平面の広がりに比して十分 小さい場合には、板厚方向の応力ガ面内 応力に対して無視できる。そこで、 面内応力についてのみ考察する。 ←等質当方性で Hooke の法則を適用 路伏条件式 Von Mises の降伏条件式 $F(\sigma) = \sigma_v$ (8) $F(\sigma) = \sigma_{ed} = (\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2)^{0.5}$ (9) ・塑性化要素の応力-ひずみ関係 $d \epsilon = d \epsilon_0 + d \epsilon_p$ (10)完全弾塑性体 図-8のとおりとなる Prandtl-Reuse の仮定に従う $d\mathbf{E}=d\lambda \cdot \partial \mathbf{F}/\partial \sigma$ (11)Associated formula (関数流れ則) に従う マトリックス D_{ep} を求める。 ($\sigma = D_{ep} \epsilon$) σeq σ, ε,

F=G F:負荷関数

G: 塑性ポテンシャル関数

以上の仮定から塑性要素の剛度を求める ひずみ反転の判定

dんにて判定

③力のつり合い条件

 ・直接力のつり合い条件を用いて定式化するも の・・・・・直接剛性法

 ・接点力を有限要素に作用する外力とみなして、 仮想変位の原理等を用い、変分原理によ

り定式化するもの 面外変形が無い場合の定式化例

(5) 式より

$\delta \epsilon = \mathbf{B} \cdot \delta \mathbf{ds}$	(13)
仮想変位の原理より	
$\delta ds(fs+ \Delta fs) = \int_{V} \delta \epsilon (\sigma + \Delta \sigma) dV$	(14)
(5)(6)式から	
$\Delta \sigma = \mathbf{B} \cdot \sigma \mathrm{ds}$	(15)
(13) (15) 式を(14)式に代入し、	これが
任意の δ ds で	
fs=Kss∠ds+∫ _A B ^T σdA	(16)
ここに Kss=t ʃ ^B ^T DBdA	(17)
変位増分ベクトル⊿ds が生じる以前におい	ては、
今考えている要素がつりあい状態にあると	すると
式 (16) において、 ∠ds および ∠fs を 0 と	おくと、
次式が成立する。	
fs=t ∫ .B ^T σ dA	(18)

(18) 式を(16) 式に代入すると、次の関係式が 成立する。

⊿fs=Kss⊿d₁

 $\Delta ds = \{ \Delta u_i : \Delta v_i : \Delta u_i : \Delta v_i : \Delta u_k : \Delta v_k \}$ 面外変形を含む場合の定式化も同様にして $\Delta f_1 = k_1 \Delta d_1$ $\Delta f_1 = \{ \Delta f_{si} : \Delta f_{bi} \}$ $\Delta d_1 = \{ \Delta d_{si} : \Delta d \}$

 $M_{xk} : \square M_{yk}$

 $W_k: \triangle \theta_{xk}: \triangle \theta_{yk}$ ④その他

残留応力及び初期たわみを同時に有する板の場 合には、仮想外力を 節点に加えることによって、 初期たわみに変化を与えないようにする。

(12)

図-9 b/h, Aw/Af=無作為による M/Mp=1.0の点

図-10 b/h=2.0 Aw/Af=0.125によるM/Mp=1.0の点

図-11 b/h=-定比率, Aw/Af=-定比率による M/Mp=1.0 の点

図-12 図-11と各国スペックとの比較

板厚方向への塑性化の広がりを考慮できるよう に、層割し、各層内では応力分布および剛度マト リックスは直線分布であると仮定する。

各板要素は初期状態において、xy、yz、あるい は zx 平面上のいずれかにある必要がある。その 他の平面上に要素がある場合には、少々の改良が 必要である。

非線型方程式の解法においては、本研究では、修 正ニュートン・ラプソン法を用いた。

このプログラムの解析結果の信頼性について永 藤・小林の過去における実験データを実際に計算 しており、実測値に近いデータが得られている。

5. 解析結果と考察

得られた各数値モデルにおける M/Mp の値を図-9,10,11 に示す。これらの値より M/Mp の点を推 定し、結ぶことによって図中の<M/Mp=1.0>の 線(塑性限界曲線)の近似線が得られる。図-12 は各国スペックと図-11で得られた<M/Mp=1.0 >を比較した図である。

フランジとウェブの断面積比を無作為に決め、 計算を行った結果は図-9に示した。この図の曲 線は、λpfが 1.0を越えている範囲では力学上明 らかに誤差を生じていると考察できる。したがっ て条件を厳密にして再解析が必要となる。

そこでフランジとウェブの断面積比を一定とし て、b,h,t,t,o値を無作為に決め計算を 行った結果は図-10に示した。この図では、各系 列のグラフが一直線になってしまい、この図から M/Mp=1.0の点をむすんだ塑性限界直線を得るの は困難である。図9および図 10の断面の詳細は第 2報を参照されたい。

そこで表-4に示したように断面積は、変化さ せないで b/h の比率だけを変化させて計算した結 果が図-11 である。この図の曲線と各国スペック とを比較したのが図-12 である。λpw が 0.2 か ら 0.6 の範囲で見てみると AIJ は、塑性限界曲線 を高く見積もっている。AASHTO,BS5400 は、約 0.1 低く見積もっている。これに対してその他の外 国 SPEC は、ほぼ一致している。しかし、λpw が 0.1 以下については M/Mp=1.0 曲線が落ち込んで いる。これについては、計算精度を含め現在検討 中である。Apw が、0.6 以上の範囲では AISC, が大きく, DIN1800 は若干大きく見積もっている。 AASHTO や BS5400 は逆に低く見積もっている。 塑性限界幅厚比曲線は DIN1800 にほぼ近似し ていることが観察された。

現在、塑性設計限界幅厚比及び塑性限界幅厚比 については幾つかの各国スペックにしか規定して おらず、日本道路橋示方書においても規定がない ので、早急に規定する必要がある。そこで、本研 究により得られた塑性限界幅厚比を提案する。

参考文献

- 1) 土木学会: 鋼構造物設計指針, 1987.
- 2) 奈良 敬: 面内力を受ける鋼板及び補鋼板の 極限強度に関する研究, P.69~78,1986,
- 3) 土木学会;座屈設計ガイドライン, 1987.10
- 中沢俊彦,山口 哲:曲げを受ける鋼型断面の降伏限界幅厚比に関する研究,1993.3
- 5) 西村宣男, 奈良 敬:鋼構造部材および要素の塑性強度の有効利用に関する研究, 1991.3
- 6) 永藤壽宮,羽田政浩:曲げを受ける鋼I形断 面の塑性限界幅厚比に関する研究,長野高専 紀要題 30 号
- 永藤壽宮,羽田政浩:曲げを受ける鋼I形断 面の塑性限界幅厚比に関する研究(第2報), 長野高専紀要題 31 号