- 飽和度の違いがカオリンの 一軸圧縮試験結果に及ぼす影響

常田 亮*・亀井 健史** (平成7年9月28日受理)

Influence of Degree of Saturation on Unconfined Compression Test Results of Kaolinite

Makoto TOKIDA and Takeshi KAMEI

In order to investigate the influence of degree of saturation on unconfined compression test results of the compacted kaolinite, unconfined compression tests were performed on the compacted soil with different initial dry density and initial degree of saturation.

As a consequence, the unconfined compressive strength and the deformation modulus increase with the decrease in the degree of saturation. In addition, linear correlations between the unconfined compressive strength and the suction at failure are obtained. The applicability of these results and conclusions to natural soils will require further research.

1. はじめに

不飽和土の力学特性に関する研究は,Bishopらの研究^{1)~3)}を端緒に1960年代より活発に 行われるようになり,不飽和土の体積変化挙動やせん断挙動を有効応力の概念に基づいて説 明しようとする研究が数多く実施されてきた^{4),5)}.その結果,不飽和土の力学的挙動をある 程度統一的かつ合理的に表現できるような有効応力式¹⁾が提案されるに至っている。しかし ながら,不飽和土は気相,液相及び固相の三相混合体であるためにその要素試験が複雑であ り,不飽和土の力学的挙動を統一的に説明するまでには至っていないとの指摘もある⁶⁾.上 記の点を考慮して,村田らⁿは,不飽和土の力学的挙動を評価する応力パラメーターとして サクションに着目し,不飽和粘性土に対して間隙水圧と間隙空気圧および外的荷重を独立に 制御した圧縮試験とせん断試験を実施し,不飽和粘性土の体積変化特性および応力一ひずみ 関係に及ぼすサクションの影響を明らかにするとともに,不飽和土の力学的挙動を評価する ための応力パラメーターとしてのサクションの有意性についても検討している。また,軽部 ら⁸⁾は,不飽和試料に対して排水及び非排水三軸圧縮・伸張試験を行い,不飽和土の圧縮・ せん断挙動に及ぼすサクションの影響を構造レベルおよび粒子間レベルで解明している。

• 環境都市工学科助教授

** 島根大学理学部地質学科助教授

一方,不飽和土の地盤工学上の重要な問題のひとつであるコラブス現象の解明を目的とした研究例が報告されている。その代表例として,Jennings and Burland⁹は,不飽和粘性土に対して圧密試験を行い,Bishopの有効応力原理¹¹の適用に関する限界を示している。しかしながら,コラブス現象は水浸による有効応力の低下に伴って地盤のせん断強さが減少し,その結果,大きな圧縮変形が発生するものであり,有効応力の原理に反する現象ではないとの報告例¹⁰もある。また,亀井・榎本^{11,12}は,不飽和土の膨潤挙動とコラブス沈下挙動を定量的に把握することを目的として,シルト質土に対して標準圧密試験装置を応用した膨潤試験およびコラブス沈下試験を実施し,膨潤特性およびコラブス沈下特性に及ぼす初期飽和度と初期乾燥密度および上載圧の影響を定量的な面から解明している。

これに対して、不飽和土の強度・変形特性に関しては、川原・畠山¹³⁾ が沖積粘土と洪積 粘土に対してサクションの測定を伴う一軸圧縮試験を行った結果、不飽和土の一軸圧縮強さ と初期サクションの間には、明瞭な相関関係が認められると報告している。また、島田・西 村¹⁴⁾は、まさ土に対してサクションを制御した排気・排水一面せん断試験を行い、サクシ ョンが40kPa 程度以上になるとせん断強度がほとんど増加しなくなると述べている。さら に、締固めた不飽和シルトに対して排気・排水三軸圧縮試験を実施した結果、強度特性に及 ぼすサクションの影響は、シルト質土よりも粘性土に大きく表われるとの報告例もある¹⁵⁾.

以上のように、不飽和土の強度・変形特性は、全応力、間隙水圧および間隙空気圧に支配 されており、初期飽和度および初期乾燥密度の影響を大きく受けていることが容易に想定さ れる.この点を考慮して、筆者ら¹⁶⁾は、初期乾燥密度および初期飽和度を変化させて静的 に締固めた DL クレイに対してサクションの測定を伴う一軸圧縮試験を実施し、初期飽和度 および初期乾燥密度が一軸圧縮強さと変形係数に及ぼす影響をある程度定量的に示している. しかしながら、上記の報告¹⁶⁾は、シルト質土に関するものであり不飽和粘性土の強度・変 形特性に及ぼす初期飽和度と初期乾燥密度の影響に関しては、未解明な点が残されている.

以上のような観点から,本研究では,初期乾燥密度と初期飽和度を変化させて静的に締固 めた不飽和カオリンに対して,サクションの測定を伴う一軸圧縮試験を実施し,不飽和粘性 土の強度・変形特性に及ぼす初期乾燥密度と初期飽和度の影響について検討した.また,試 料の粒度組成の違いが,不飽和土の強度,変形特性に及ぼす影響についても考察した.

ì

2. 試料および実験方法

2-1 試 料

実験に使用した試料は,主成分が粘 土分であるカオリンである.試料の物 理的特性と粒径加積曲線を Table 1 と Fig.1 に示す.供試体は直径 5 cm, 高さ10cmの円柱形とし,供試体密度 の均質性を考慮して,直径 5 cm,高 さ20cmのモードル内の試料を1 cm/ minのひずみ速度で静的に締固めて作 成した.また,供試体の内的条件は既

Fig. 1 Grain size distribution curve of sample

飽和度の違いがカオリンの一軸圧縮試験結果に及ぼす影響

Soil Sample	ρ _s (g/cm³)	w _L (%)	w _P (%)	I _P	Sand (%)	Silt (%)	Clay (%)
Kaolinite	2.679	73.1	36.7	36.4	0	3	97

Table 1 Index properties of soil sample

往の研究例¹⁶⁾を考慮して、初期飽和度 S_{r1}を20, 40,60,80,85,90,95%の7種類とし、初期 乾燥密度 ρ_{d1} を1.266g/cm³(0.85 ρ_{dmax}), 1.043g/cm³(0.7 ρ_{dmax})の2種類とした。なお、 本研究では、初期乾燥密度が1.266g/cm³の場 合には初期飽和度が20%、初期乾燥密度が 1.043g/cm³の場合には初期飽和度が90,95% の条件に関する実験が、供試体成形が不可能で あったので実施できなかった。

2-2 実験方法

実施した実験は、サクションの測定を伴うひ ずみ制御方式の一軸圧縮試験であり、データの ばらつきを考慮して同一条件の供試体に対して 2本以上行った。また、せん断時のひずみ速度 は1.0%/minとした¹⁷⁾.なお、一軸圧縮試験は 不飽和土用三軸室を使用して行い、セル圧およ び間隙空気圧は大気圧($\sigma_c=u_a=0$)とした。

3. 実験結果および考察

3-1 初期サクションと初期飽和度および初 期乾燥密度の関係

Fig. 2 および Fig. 3 は、初期サクション Sui と初期飽和度 Sri および初期乾燥密度 ρ_{d1} の関 係を示している。ここで、図中の一点は、同一 条件の供試体より得られた Sui の平均値である。 また、両図には DL クレイの試験結果¹⁶)を併

Fig. 2 Relationship between initial suction and initial degree of saturation

Fig. 3 Relationship between initial suction and initial dry density

記した. カリオンおよび DL クレイの Sui は、 ρ_{d1} によらず Sri の増加に伴って減少する傾向 を示しており、その減少割合は、Sri が40%と85%の場合を比較すると、カオリンでは45% 程度であるのに対して、DL クレイの場合には約35%となっており、カオリンの減少割合が DL クレイよりも大きいことがわかる。また、同 Sri 条件下における Sui は、カオリンが DL クレイよりも大きな値を示しており、両者の差は Sri の増加に伴って減少し、Sri が40%の 場合には20kPa 程度であったものが、Sri が80%以上になると約10kPa となっている。さら に、Sui は、Fig. 3 に示すように、Sri によらず ρ_{d1} の増加に伴って減少しており、その減少 傾向には試料の粒度組成の違いによる相違 が認められない。

以上のことより, S_u は試料の粒度組成 の違いによらず S_r および ρ_d の増加に伴 ってほぼ同様の減少傾向を示すことがある 程度明らかとなった。

3-2 圧縮応力と軸ひずみの関係

異なる初期乾燥密度 pai を有する供試体 の圧縮応力と軸ひずみの関係を、Fig.4(a)。 (b)に示す。 pdiが1.266g/cm3の場合, 圧縮 応力は軸ひずみの増加に伴って増加し、変 形特性は若干異なるものの圧縮応力一軸ひ ずみ曲線には、初期飽和度 Sri によらず明 瞭なピークが認められる。また, 圧縮応力 ー軸ひずみ曲線は、Sriが80%以下の場合 には、約2%~3%の軸ひずみで破壊に至 っているのに対して、Sri が90%以上にな ると破壊ひずみが8%程度に増大している。 これに対して、 pai が1.043g/cm³の場合、 応力ーひずみ曲線は、Sri が80%以下の条 件では明瞭なピークを示すが、Sri が85% になると明瞭なピークが認められず、圧縮 応力は軸ひずみが6%程度に達するとほぼ

Fig. 4 Typical stress-axial strain behaviour

一定値を示している。また、 S_{r1} が60%以下の場合には、圧縮応力一軸ひずみ曲線は、軸ひずみが約2%に達すると破壊に至っているのに対して、 S_{r1} が80%を越えると破壊ひずみが 9%程度に急増している。さらに、同軸ひずみ条件下における圧縮応力は、 ρ_{d1} によらず S_{r1} の増加に伴って減少する傾向を示しており、 S_{r1} が40%と85%の場合を比較すると、一軸圧 縮強さの減少割合は30%~40%程度となっている。

3-3 せん断時のサクションと軸ひずみの関係

Fig. 5 (a), (b)は,異なる初期乾燥密度 ρ_{a1} を有する供試体のせん断時のサクションSu と 軸ひずみの関係を示している。せん断時のサクションは、初期飽和度 Sr1 が85%以下の場合 には ρ_{a1} によらず軸ひずみの増加に伴って僅かに増加する傾向を示しており、同様の傾向は 既往の研究例^{16),18)} においても報告されている。これに対して、Sr1 が90%を越えると、せん 断時のサクションは軸ひずみの増加に伴って僅かに減少し、軸ひずみが7%~8%程度に達 すると徐々に増加する傾向を示している。これは、Sr1 が90%以上の場合には、せん断の初 期に正の間隙水圧が発生していることを示唆しているものと考えられ、同様の傾向は DL ク レイ¹⁶⁾ においても認められている。したがって、Sr1 が90%以上の場合には、試料の粒度組 成の違いによらずせん断の初期に正の間隙水圧が発生するものと考えられる。また、サクシ ョンー軸ひずみ曲線は、Sr1 が同じ場合には破壊ひずみが若干異なるものの ρ_{a1} によらずほ

飽和度の違いがカオリンの一軸圧縮試験結果に及ぼす影響

ば類似した挙動を示すことがわかる。

3-4 有効応力径路

異なった初期乾燥密度 pai 条件下における

Fig. 6 Typical effective stress paths

 $(\sigma'_1 + \sigma'_2) / 2$

有効応力径路を, Fig. 6 (a), (b)に示す. なお, ここでは, $(\sigma_i - \sigma_a)/2$ を平均軸差応力, $(\sigma_i' + \sigma_a')/2$ を平均有効応力と定義している. 初期飽和度 S_{r1} が90%以上の場合には, 有効応力径路は ρ_{d1} によらず平均有効応力の増加に伴って平均軸差応力が増加し, 等方圧密非排水三軸圧縮試験より得られた飽和土破壊線 (Failure Envelope) に漸近していき破壊に至っている. これに対して, S_{r1} が85%以下の場合, 有効応力径路は, 平均有効応力の増加に伴って平均軸差応力がほぼ直線的に増加し破壊に至っており, この挙動には ρ_{d1} による相違が認められない. また, 破壊時の平均軸差応力は, S_{r1} の低下に伴って増加する傾向を示しており, この傾向は既往の研究例^{16),19)} においても認められている. さらに, このときの破壊点は, ρ_{d1} の違いによらず S_{r1} の低下に伴って飽和土破壊線から離れる傾向を示している. 3-5 強度特性

Fig. 7 および Fig. 8 は、一軸圧縮強さ q_u と初期飽和度 S_{r_l} および初期乾燥密度 ρ_{dl} の関係 を示している。なお、図中の一点は、同一条件の供試体より得られた q_u の平均値であり、 両図には DL クレイの試験結果¹⁰ を併記した。 q_u は ρ_{dl} によらず S_{rl} の増加に伴って減少す

150

150

る傾向が認められ、 S_{r1} が80%以上になると 減少割合が増大しており、その値は S_{r1} が40 %と85%の場合を比較すると、カオリンでは 30%~40%程度、DLクレイの場合には約40 %である。この主要因としては、 S_{r1} の増加 に伴って初期サクションが低下し、その結果、 見掛けの粘着力が減少しているためであると 考えられる。また、 S_{r1} が80%以上になると 考えられる。また、 S_{r1} が80%以上になると 考えられる。また、 S_{r1} が80%以上になると 考えられる。また、 S_{r1} が80%以上になると さろに、同 S_{r1} 条件下における q_u は、 ρ_{d1} の 増加に伴って増加する傾向を示しており、カ オリンの場合には20%~30%程度(ρ_{d1} =

Fig. 8 Relationship between the compressive strength and initial dry density

Fig. 9 Relationship between the compressive strength and the suction at failure

1.043g/cm³, 1.266g/cm³を比較), DL クレイでは約70%~85% (ρ_{d1} =1.326g/cm³, 1.482 g/cm³を比較)の増加割合となっている。これは、DL クレイの主成分がシルト分であるために、 ρ_{d1} の増加に伴って正のダイレイタンシーの影響を大きく受けており、その結果、 q_u の増加割合が大きくなったものと考えられる。

Fig.9は、カオリンとDLクレイの q_u と破壊時サクション S_{uf} の関係を示している。 q_u は ρ_{d1} によらず S_{uf} の増加に伴ってほぼ直線的に増加する傾向を示しており、既往の研究 例¹⁰⁾においても同様の傾向が認められている。このことは、不飽和土の一軸圧縮試験結果 を有効応力で整理することによって、内部摩擦角と粘着力を算出することが可能であること

Fig. 10 Relationship between the modulus of deformation and initial degree of saturation

を示唆しているものと考えられる.

3-6 変形特性

変形係数 E_{so} と初期飽和度 S_{r1} および初期 乾燥密度 ρ_{d1} の関係を, Fig.10と Fig.11に示 す.ここで, E_{so} は圧縮応力一軸ひずみ曲線 上において,一軸圧縮強さ q_u の1/2となる点 と原点とを結ぶ割線係数で定義した.なお, 図中の一点は,各供試体条件における E_{so} の 平均値を示しており,両図には DL クレイの 試験結果¹⁶⁾を併記した. E_{so} は,全 ρ_{d1} 条件 下において S_{r1} の増加に伴って減少しており, その減少傾向は粒度組成の違いによらずほぼ 類似した挙動を示している.これは, q_u が S_{r1} の増加に伴って減少していることが,そ の主要因であるものと考えられる.また, S_{r1} の増加に伴う E_{so} の減少割合は, S_{r1} が40

Fig 11 Relationship between the modulus of deformation and initial dry density

Fig. 12 Relationship between the modulus of deformation and the suction at failure

%と85%の場合を比較すると、カオリンでは約70%~80%、DL クレイの場合には30%~35 %程度である。さらに、両試料の E_{50} は、 S_{r1} によらず ρ_{d1} の増加に伴って増加する傾向を示 しており、その増加割合は、カオリンの場合には約20%(S_{r1} =40、60%)~50%(S_{r1} =80 %)(ρ_{d1} =1.043g/cm³、1.266g/cm³を比較)、DL クレイでは15%~20%程度(ρ_{d1} =1.326 g/cm³、1.482g/cm³を比較)である。

Fig.12は、カオリンとDL クレイ¹⁶⁾の E_{50} と破壊時サクション S_{uf} の関係を示している。

ρ_{d1} (g/cm ³)	S _{r1} (%)	w (%)	S _{ui} (kPa)	S _{ur} (kPa)	q _u (kPa)	E₅₀ (kPa)	€1 (%)	¢ ′ (°)
1.266	20	8.3						
	40	16.6	53	56	145.2	16100	1.6	28.3
	60	24.9	45	49	138.5	13800	1.7	28.8
	80	33.2	37	39	116.8	7900	2.8	29.5
	85	35.3	36	37	112.4	5100	3.0	30.2
	90	37.4	30	31	102.0	3100	7.6	30.5
	95	39.4	29	29	93.5	2600	8.1	, 30.8
	100	41.5						31.3
1.043	20	11.7	62	65	125.4	15600	1.6	26.5
	40	23.4	56	58	120.3	13300	1.8	27.1
	60	35.1	47	50	113.8	11300	2.2	27.7
	80	46.8	38	40	86.5	3800	8.6	28.0
	85	49.8	36	37	73.3	2600	8.8	28.5
	90	52.7						
	95	55.6	-					
	100	58.5						29.8

Table 2 Summary of unconfined compression test results

注) 初期飽和度100%の条件における内部摩擦角は,等方圧密非排水三軸圧縮試験 結果より算出した。

図より、カオリンおよび DL クレイの E₅₀ は、Suf の増加に伴ってほぼ直線的に増加する傾向を示しており、試料の粒度組成の違いによる相違が認められないことがわかる。

3-7 内部摩擦角と初期飽和度および初期乾燥密度の関係

Fig.13は、初期乾燥密度 ρ_{a1} を変化させた場合の内部摩擦角 ϕ' と初期飽和度 S_{r1} の関係を示している。 ϕ' は ρ_{a1} によらず S_{r1} の増加に伴って増加する傾向を示しており、 S_{r1} が40% と85%の場合を比較すると、その増加割合は、カオリンでは1°~2°程度、DL クレイの場合には約1°~3°である。また、同 S_{r1} 条件下における ϕ' は、DL クレイがカオリンよりも大きな値を示している。これは、 S_{r1} が同じ場合には、DL クレイの初期サクション S_{u1} の値がカオリンよりも小さいことに起因しているものと考えられる。さらに、 ϕ' は、Fig.14に示すように、 S_{r1} によらず ρ_{d1} の増加に伴って増大する傾向を示しており、その増加割合は、カオリンの場合には約5% (ρ_{d1} =1.043g/cm³、1.266g/cm³の場合を比較) であるのに対して、DL クレイでは40%~50%程度 (ρ_{d1} =1.326g/cm³、1.482g/cm³の場合を比較) となっている。これは、DL クレイの主成分がシルト分であるために、 ρ_{d1} の増加に伴って正のダイレイタンシーの影響を大きく受けており、その結果、 ϕ' の増加割合が大きくなったものと考えられる。

Table 2は、今回実施したサクションの測定を伴う一軸圧縮試験結果をとりまとめている。

4. 結 論

本研究では、初期飽和度および初期乾燥密度の違いが不飽和土の一軸圧縮試験結果に及ば す影響を解明するために、静的締固めにより作成した供試体に対してサクションの測定を伴 う一軸圧縮試験を実施した.また、粒度組成の違いが締固めた不飽和土の強度・変形特性に 及ばす影響についても検討を行った.

以下に,本研究より得られた主要な結論を列記する.

- 同初期飽和度条件下における初期サクションは、カオリンが DL クレイよりも大きな値 を示した。したがって、初期サクションは、試料の主成分が粘土分である場合には主成分 がシルト分である場合よりも大きくなるものと考えられる。
- 2) 一軸圧縮強さおよび変形係数は、試料の粒度組成の違いによらず初期飽和度の増加および初期乾燥密度の低下に伴ってほぼ類似した減少傾向を示すことが明らかとなった。また、初期飽和度の増加に伴う一軸圧縮強さの減少割合は、初期飽和度が40%と85%の場合を比較すると、カオリンでは30%~40%程度、DLクレイでは約40%であった。これに対して、変形係数の減少割合(初期飽和度が40%と85%の場合を比較)は、カオリンでは約70%~80%であるのに対して、DLクレイの場合には30%~40%程度であった。
- 3) 初期乾燥密度の増加に伴う内部摩擦角の増加割合は、DLクレイでは40%~50%程度 (p_{d1}=1.326g/cm³, 1.482g/cm³の場合を比較)であるのに対して、カオリンの場合には 約5% (p_{d1}=1.043g/cm³, 1.266g/cm³の場合を比較)であった。このことより、試料の 主成分がシルト分である場合には、内部摩擦角は初期乾燥密度の影響を大きく受けるもの と考えられる。

参考文献

1) Bishop, A. W.: The measurement of pore pressure in the triaxial test, Pore pressure and Suction in Soils, pp. 38~46, 1960.

45

- 2) Bishop, A. W. and Donald, I. B.: The experimental study of partly saturated soil in the triaxial apparatus, Proc. 5th Int. Conf. SMFE, Vol. 1, pp. 13~21, 1961.
- 3) Bishop, A. W. and Blight, G. E.: Some aspects of effective stress in saturated and partly saturated soils, Geotechnique, Vol. 13, No. 3, pp. 177~197, 1963.
- 4) Jennings, J. E. B. : A revised effective stress law for use in the prediction of the behaviour of unsaturated soils, Pore Pressure and Suction in Soils, pp. 26~30, 1960.
- 5) Aitchison, G. D.: Relationship of moisture stress and effective stress functions in unsaturated soils, Pore Pressure and Suction in Soils, pp. 47~52, 1960.
- 6) 足立紀尚・岡二三生:不飽和土の試験法と力学挙動,土と基礎, Vol. 29, No. 6, pp. 27~33, 1981.
- 7) 村田秀一・兵頭正幸・安福則之:サクションを用いた不飽和土の力学的挙動の評価,不飽和土の工学的性質研究の現状シンポジウム論文集, pp. 11~16, 1987.
- 8) 軽部大蔵・苗村康造・森田 登・岩崎哲雄:不飽和土の力学的性質に関する基礎的研究,土木 学会論文報告集,第269号, pp. 105~119, 1978.
- Jennings, J. E. B. and Burland, J. B. : Limitations to effective stress in partly saturated soils, Geotechnique, Vol. 12, No. 2, pp. 125~144, 1962.
- 10) 阿部廣史・川上 浩:不飽和土の負の間隙水圧とコラプス現象,不飽和土の工学的性質研究の 現状シンポジウム論文集, pp. 45~54, 1987.
- 11) 亀井健史・榎本雅夫:水浸に伴う不飽和シルト質土の膨潤特性,土木学会論文集,No. 505/ III-29, pp. 89~96, 1994.
- 12) 亀井健史・榎本雅夫:締固めたシルト質土の水浸に伴うコラブス沈下挙動,土木学会論文集, No. 505/III-29, pp. 97~104, 1994.
- 13) 川原孝洋・畠山正則:応力解放に伴うサクションと一軸圧縮強さの関係,第28回土質工学研究 発表会講演概要集,pp. 797~798, 1993.
- 14) 島田 清・西村伸一:不飽和まさ土の強度特性に与えるサクションの影響,第27回土質工学研 究発表会講演概要集,pp. 743~744, 1992.
- 15) 宇野尚雄・杉井俊夫・松崎康隆・安藤功朗:不飽和シルトの変形と強度に関する研究,第27回 土質工学研究発表会講演概要集, pp. 741~742, 1992.
- 16) 常田 亮・亀井健史:締固めた土の一軸圧縮試験結果に及ぼす飽和度の影響,長野工業高等専 門学校紀要,第28号,pp.63~73,1994.
- 17) 土質工学会編:土質試験法〔第2回改訂版〕, 1979.
- 18) 土質工学会編:不飽和地盤の調査・設計・施工に関する諸問題シンポジウム発表論文集, 1992.
- 19) 土質工学会:不飽和土, ジオテクノート 5, pp. 77~85, 1993.

46