多重解テイラー渦におけるモードの 形成条件(自由端の場合)

戸谷 順信*·中村 育雄**

Configurational condition of the multiple Taylor vortex flow (In the case of an asymmetric condition)

Yorinobu Toya and Ikuo NAKAMURA

Taylor vortex flow has sevral flow patterns (modes) in the same condition at small aspect ratio. The primary mode that is formed by increasing Reynolds number (Re) gradually from zero has a unique pattern with two normal cells having inward flow direction on the bottom end plate and the other cell's having outward flow direction in the upper position. And the secondary modes that are formed by increasing Re rapidly have sevral flow patterns with the normal cell or with an anomalous cell. An anomalous cell has outward flow direction on the bottom end plate. The number of the modes apperaring according to the various ways of increasing Re is countered. The entropy is calculated and clears the complication of the bifurcation of the modes. The processes of the formation of modes are illustrated and discussed. Finally comparison of the results with the symmetric and the asymmetric conditions is discussed.

1. 緒 論

同軸回転二重円筒間のテイラー渦流れは流体安定問題のパラダイムの一つとして活発に研究されている。多数の理論は無限円筒を仮定し、実験もアスペクト比Γを大きくとって端面の影響を小さくしたものがほとんどであるが、Γの小さい場合を理論、実験の双方から調ベ、テイラー渦の研究に新しい展開をもたらしたのがBenjaminである⁽¹⁾⁽²⁾.その後、多くの研究がΓの小さい場合についてなされてきた⁽³⁾.著者らはBenjaminによって提唱された、 Γの小さい場合のテイラー渦の主モード、2次モード、正規モード、変異モード状態を上面が自由表面である自由端と固定端の場合に、その発生条件、渦の構造の観点から詳細に調べてきた^{(4),(5),(6)}.変異モードの存在については議論がなされてきたが⁽³⁾、著者らの可視化写真によれば端面上における外向き流れを持つ変異セルが疑う余地なく存在する⁽⁶⁾.

2次モードの発生は興味ある問題であるが、その発生状態を Re の上昇のさせ方を変えて 系統的に調べた例は少なく、固定端の場合においてのみ、東らの数値計算^{(7),(8)}、Bielek と Koschmieder の実験結果があるようである⁽⁹⁾、東らは主モードと2次モードの一つの発生を

* 機械工学科 講師

** 名古屋大学 教授

原稿受付 平成5年9月22日

計算し注目されるが、同条件下で実験的には確かめられている他のモードには言及していない。Bielek らは多数回の実験を行っているが、モード発生の確率や渦の形成過程の詳細は述べられておらず、また、著者らの確認したのとは異なり奇数個の渦はないとしているが、それは数値計算の結果をそのまま認めたもので十分なものとはいえない⁽⁹⁾。一般に報告されている研究には固定端の場合が多く、自由端における研究は古くは Cole⁽¹⁰⁾、Snyder⁽¹¹⁾の研究があるが、アスペクト比が非常に大きく Benjamin 以後の端面の影響について考慮しているという意味では自由端の場合の研究は見当たらない。

本研究は自由端の場合において、多様なパターンが生じ、Re 減少時の分岐は比較的単純 なことが分かっている Γ =4.9の場合(図3)に問題を絞って、最終 Re と回転数の直線的 増加率を変えて各モードの発生頻度や、渦の形成過程を調べて、この流れの複雑な分岐過程 の一端を明らかにしようとしたものである。著者らは従来よりアスペクト比が小さいテイラ ー渦流れに関する実験をすべて固定端と自由端について行っており、二つの境界条件におけ る違いを明らかにしてきた。固定端については既に報告してありレイノルズ数の増加の仕方 によってモードの発生頻度、形成過程の違いについて調べ、分岐過程の一端明らかにし た⁽¹²⁾.本報も前報の固定端の場合における実験に続くものであり、最後に固定端と自由端 における分岐関係、形成過程の比較も行う。

本問題は広く見れば外的条件が非定常なテイラー渦の問題である。関連した Γ の大きい テイラー渦の変調(modulation)の研究⁽¹³⁾についてはいくつかの条件で行われているが、 その内容については既報⁽¹²⁾を参照されたい。

本論文で用いる記号は次のようである。

 R_1, R_2 : それぞれ内外円筒半径(本装置では $2R_1 = 79 \pm 0.1$ mm, $2R_2 = 119.1 \pm 0.1$ mm)

D:内外円筒の隙間(D=R₁-R₂=20±0.1mm)

L:作動流体の円筒軸方向高さ

Γ:アスペクト比=L/D

ω, ω₀:内円筒角速度, ω₀は最終角速度

ν:作動流体の動粘度

Re:最終レイノルズ数, Re= $\omega_0 R_1 D/\nu$,回転数変化時には $\omega R_1 D/\nu$ を意味する.

Τ:内円筒が静止からω。に一定加速で達するまでの時間

St:無次元加速パラメータ、St= $1/\omega_0 T$

その他の記号はその都度定める。

実験装置と方法

実験装置を図1に示し、主要寸法は記号表に記した、内円筒はステンレス製、外円筒は透明アクリル製で、その外側にアクリルの四角い槽がある。この四角い槽は透明液体が満たされ可視化像の屈折を補正し、また作動流体の温度管理の役割をする。内円筒はサーボモータ にタイミングベルトで連結されて回転する。本装置は渦の可視化を容易にするため従来のものより大きい⁽⁴⁾.

作動流体は体積比約1:1の水とグリセリンの混合液であり、トレーサとしてアルミ粉を 混入し可視化した。Reを任意に変化させる方法は内円筒の回転数で行う。よって作動流体 多重解テイラー渦におけるモードの形成条件(自由端の場合)

N 5 : Primary Normal 5 cell Mode N 3 : Secondary Normal 3 cell Mode N 7 : Secondary Normal 7 cell Mode (with anomalous cell on the lower end plate) A 1 6 : Secondary Anomalous 6 cell Mode (with anomalous cell on the lower end plate) C : Couette Flow 図 3 流れのモードと Re 減少時の分岐関係 (F=4.9)

の動粘度は一定になるように作動流体の温度を25±0.5℃に保持する.サーボモータ(山洋 電気社製 BL820 BM060BXT)は回転数とその回転数に達するまでの時間をディタル位置 決め装置(同社製 PDC-F-112)でディジタル制御できる。回転速度の変化の様子を図 2 に示す.この回転数と時定数は Re と St の値を決定する。回転数はパルス列に比例してお り、本装置のモータ軸における回転数制御の精度は最小移動量が360×(1/4000) 度/パルス に設定されている。

本実験は自由端の場合を行ない、Γは4.9に設定した。流れの断面観察にはスライドプロ ジェクタを使用し、5 mm幅のスリット光を方位角方向に垂直に照射した。流れの断面の

様子はビデオカメラで撮影,記録した。ビデオカメラは1 コマの撮影を1/30秒で行ない,流 れの形成過程を解析するために適当な時間における流れの画像をビデオプリンタで出力した。

本実験条件である自由端の場合で、Γ=4.9において安定に存在するモードは既に報告さ れており⁽⁶⁾, Reが除々に減少したときの流れの分岐図を図3に示す。ここでN5は主モー ドで、その他のモードは2次モードを表わす。特に、Al4、Al6は変異セルが下端面に存在 するモードを意味する。

実験は以下の方法で行った。 Γ が大きい場合の直線加速の研究には速度ゼロからのものと, クエット流状態で一定回転しているところからのものと2種類ある。ここでは初速度ゼロか ら行った。すなわち,流れの初期状態を目視で静止と認められる状態から,設定した ω_0 ま で,設定したTで図2のように増加させ,発生した渦モードを観察する。図2のように円筒 を静止させ,同じ実験を繰り返す。このような流れの特性時間は作動流体の高さ方向に対し, L^2/ν ,隙間方向に対し D^2/ν ,スピンアップ時間として $L^2/\nu\omega_0$ などがある⁽¹¹⁾。有限長テイ ラー渦の場合には $\sqrt{L^2/\nu}$ が重要とされ,Snyder は渦状態が定常になるまでに0.15 L^2/ν が必 要としている。本実験では0.15 $L^2/\nu=177.8$ see.($\nu=5.4$)となるので4分間を流状態を安 定化させる時間にとった。本実験ではT=0.01~4.00sec.であり、 L^2/ν に比べかなり早い。

このような加速でどのモードが発生するかは、これまでの実験から一意的でないことが分 かっているので実験は一組の条件、すなわち(Re, St)の一組に対して100回行った。Re は 6種、St は 6種で以下に示したものだけでも3600回の実験である。ちなみに Bielek らは 976回実験したと述べている⁽⁹⁾. なお、固定端の場合で2種の Re, 6種の St について、各 300回観察したが、100回の場合と基本的な差はなかった。今回自由端においては行ってない が、同様であると考える。

3. 実験結果と考察

3.1 各モードの発生頻度について

ReとStを変化させたときの2次モード(図3参照)の発生回数の頻度分布を図4に示す. 各グラフはReの値を変えたものである。図において {100-(全2次モード発生頻度)}が 主モード(図3,のN5)の発生頻度を示す。100回の実験なので頻度は発生確率をパーセ ントで示したことになる。図よりReとStの値により主モードの発生頻度がかなり異なる ことが分かる。図は略すが、Re=650ではStの値にかかわらず100%主モードであり、Re が小さい場合はStの影響は見られない。Re=1250では主モードの発生頻度が減少し、それ はStの値によって異なる。しかし、St=36×10⁻²では60%程度に主モードは減少する。特 に Re=3780では主モードの発生頻度はSt が2×10⁻²では50%以下と非常に小さい。Re= 1900、2540と3140では主モードの発生頻度はSt が2×10⁻²では50%以下と非常に小さい。Re= 1900、2540と3140では主モードの発生がほとんどである。よって Reが低いある範囲で2次 モードが発生し、Reが増加すると一旦主モードの発生が増加するが、さらに Reが増加す るとまた、2次モードが発生するようになるといえる。Re=3780では主モードは波動テイ ラー渦にホップ分岐しているので、これ以上の Re については実験を行わなかった。また、 各 Re で St の値が揃っていないのも波動渦発生条件が違い、それ以前の分岐を調べたため である。 多重解テイラー渦におけるモードの形成条件(自由端の場合)

各2次モードの発生頻度は図4中に印分けして示した。Re=1250では3セルモードが発 生している。Re=1900と2540では主モードの発生頻度が高いため2次モードはあまり発生 していないが、発生している内訳を見るとRe=1900では最もモードの種類が多く、Stにも よるが全種類が発生している。このことは固定端においてRe=2000で2次モードの発生が 多かったが、Re=3000では主モードの発生頻度が増加したことと類似している⁽¹²⁾。Re= 3140、3780では変異4セルモードの頻度が高い。特に変異4セルモードがRe=3780でかな り発生している。3セルモードはRe=650を除く全てのReでほとんどのStで発生してい る。3セルモードは固定端における変異3セルモードと対応している。

同じアスペクト比で存在する2次7セルモードがほとんど発生していないが,これは以下 の理由による。即ち Re=650の場合に一旦7セルモードが発生することがあるが,その後主 モードに分岐する。本実験は Re を変化させて最終的に安定して存在するモードを調べたた め,2次7セルモードは発生しないという結果になった。2次7セルモードを発生させるに は一旦発生した7セルモードの状態で崩壊する前に Re を適当に変化させて安定化させなけ ればならない。このことは固定端において6セルモードが発生しにくかった結果と対応して いる。

3.2 各場合の情報エントロピー

固定端の場合⁽¹²⁾で述べたように、マクロには同一条件とみなされる実験で発生渦パター ンが確率的にしか定まらぬことは、分岐が複雑で、流れがその点近傍で不安定であることに よると考えられる。このような系の挙動を明らかにするには実験的にも数値的にも困難であ り、流れの力学に立ち入ることなく現象として表現することを考えてみると、図4の各場合 のパターンの分類に情報エントロピーを利用することが考えられる。情報エントロピーが現 象を観測することによってもたらされる情報量という直観的解釈を持つことによる⁽¹³⁾。 情報エントロピーHは今の場合,ある Re で,ある St 対し,

$$H = \sum_{i} (-p_i \log p_i)$$

で定義される⁽¹³⁾. ここに p_i はその(Re, St)の場合の各モードの発生確率を示す.

図5は各Reについての情報エントロビーを示したものである。Re=650の場合は上述の ようになっているので図示してない。Re=1250では全体的にHは大きく0.4以上になってい る。よって比較的その分岐関係は複雑である。Re=2540ではSt全体にわたってHは低く, Re=1900,3140ではStが小さい範囲ではHが小さいが,Stが大きいとHも増加している。 よって、同じReでもStが大きい場合、分岐関係も複雑さを増すと思われる。さらに、 Re=3780ではStが小さいときは主モードがほとんど発生するため、Hは小さいが、Stが増 加すると、Hは大きいので全体にわたり分岐関係は複雑であると思われる。情報エントロピ ーの値そのものは定性的な意味が強く、既報⁽¹²⁾で述べたように300回の実験で基本的な差は なかったので、図5の各値の相対関係は意味あるものと思われる。定量的な判断はしにくい が、もし情報エントロピーが分岐の複雑さをある程度表わすものであるならば、固定端と自 由端の場合の複雑さを比較すると、全体的に固定端の方が情報エントロピーが大きく複雑な 分岐関係であるといえる。

ここで、このような分岐現象でどの分枝が選択されるかについては固定端の場合と同様で あると考えられる。2次モードの解はいずれも主モードの解とは切り離された分枝上にある と考えられている⁽³⁾.本実験のようにいくつもの解が同一と考えられる条件でランダムに生 ずることはこれらの分枝が近接して存在することを示している。そのどれかが選択されるか は装置に起因する不完全分岐によるものか、完全静止にはできないための流体力学的ゆらぎ によるのか明らかではない。装置の不完全さも回転同筒のガタ、振れ回りとか、モータの回 転数の不均一によるのか様々である。自由端の場合と固定端の場合を比較すると自由端の場 合の方が情報エントロピーは全体的に小さかった。よって解の分岐関係は固定端に比較して 自由端の方が複雑ではないといえる。装置の幾何学的条件からいえば、自由端の場合、上面 が自由表面であり非対称であるのに対し、固定端の場合、上下端の対称性が完全であるとは 考えない。そのために分岐の複雑さが大きくなったと考えることはできる。しかし、どちら の場合にも分岐の複雑さが存在するので、その複雑さは、渦モード発生のバラッキからみる と、装置の不完全性よりもむしろ、初期の流れが完全静止でないこと、特に僅かな対流など の初期状態によると考えるのが妥当と予想される。

しかし、再度ここで強調したいのは、現実には初期状態は無限に存在し、Reの増加の仕 方は幾つかあるにもかかわらず、最終的に落着く安定した流れの状態、すなわちアトラクタ は4つ(N5,N3,A14,A16の各モード)存在するのであり、我々の従来の実験結果か らΓ=4.9で実際に存在するアトラクタは5つ(上記のモードにN7を加えたもの)しかな いということである.

3.3 モードの形成過程について

Re と St の値によって発生するモードの種類及び頻度が異なることが明らかになったが、 その具体的なモードの形成過程は複雑であり一様でない。本実験では形成過程の異なる様子

(b) N3: Re=1250, St=26.8×10⁻²
図6 テイラー渦の形成過程の断面画像

をビデオカメラで撮影し、その画像をビデオプリンタに出力し確認した。その各モードの形 成過程は一通りではないので、各モードの代表的な形成過程を図6に示す。

ビデオ画像を詳細に観察することにより、以下のことが判明した。

- (1) テイラー渦は回転による遠心力により内円筒表面から発生する半径方向の流れと,端面の影響により内円筒と端面の角に発生するプラントルの第1種の流れである2次流れとの時間的な差がモードの形成過程に影響する。
- (2) 2次流れは半径方向流れが発生する前に発生する。しかし、2次流れは Re が650程度 の小さい値でない限りモードの決定に影響しない。
- (3) 2次流れと半径方向の流れは Re が大きいほど, また, St が大きいほどその時間的差は 小さい.
- (4) 半径方向の流れは Re が小さい場合,端面上に発生する2次流れの影響で下端面側から 発生し,順次,上面よりに発生する。Re が大きい場合,下端面から2次流れが発生し, 続いて自由表面における半径方向の流れが発生し,最後に円筒の中央部分で半径方向の流 れが発生する。
- (5) 2次流れに比較して半径方向の流れは運動量が大きく,発生場所が中央によるほどその 傾向が強い。

以上の内容からモード別に発生の内容をまとめ、テイラー渦流れの形成過程の様子を主モ ードであるN5について Reの増加条件が異なる場合と2次モードの代表としてN3とA14 を模式図にして図7(a)~(d)に示す。各図は順次、時間の経過による流脈の変化の様子を表わ している.内円筒は矢印の方向に回転している.主モードは Re が準静的に増加する場合と 急加速の場合で異なり、(a)の主5セルモードは Re が小さいと下端面上における2次流れが 発生し、次第に上の方へ向かって半径方向の流れが発生する。最上部の渦対の発生と表面に おいて外円筒方向の流れのセルは同時に発生する。本実験で行った Γ=4.9の場合,初め7 セルの状態が形成されるが、3対のセルのうち上の2対の渦が次第に不安定になり1対にな り,最終的に5セルを形成する。(b)はReが大きくなると上下端面上で2次流れおよび半径 方向の流れが発生する。また、半径方向の流れは比較的早く発生し、多くの渦が形成される。 その後,運動量の大きい流れが次第に他の流れを吸収し5セルになる。既に述べたように回 転円筒中央付近に発生した渦の方が運動量は大きいが、最終的にどの渦が残るかは初期状態 に依存する。主モードに対して2次モードである変異4セルモードの(d)は Re と St が大き い場合、半径方向の流れから発展する渦の数が多く、N5の場合と比較し、各渦が発生する 時間にほとんど差がない。よって中央よりの運動量の大きい流れが発展してできた渦が端面 よりの渦を下端面側へ押しやり,他の渦に吸収させてしまう.通常なら対を成して存在する 渦対のうち一つの渦だけが吸収崩壊し、下端面上に変異セルのみが残ることになる。

3.4 固定端と自由端における比較

二重円筒間の上端面の境界条件の違いはそこで発生するテイラー渦流れの安定構造を異なったものにしている。テイラー渦がその形成過程から各々主モードと2次モードに,渦構造から正規モードと変異モードに分類されることは既に報告している。その分類の詳細は文献を参照されたい^{(4),(5)}.固定端と自由端において構造安定に存在するモードについて Re を減少させたときの分岐関係を固定端の場合はΓ=4.0,自由端の場合はΓ=4.9について図8に

示す。自由端の図は図3と同じものである。各 Γ においてこれ以外のモードは存在しない。 固定端の場合に安定して存在するモードの方が1つ多く存在する。これは固定端において存 在するモードの一つが自由端では波動テイラー渦状態でしか存在しないことから除いてある ためである。

2 つの場合において、実験では Re の増加の加速時間はT=0.01~4.0秒と同一である。 6 つの種類で行った最終 Re は各 Γ における主モードがホップ分岐して波動テイラー渦にな る臨界 Re の値が異なるため、二つの場合で異なっている。既報と本報の結果から二つの場 合において以下のことが明らかになった。

- (1) 固定端の場合で、主モードの発生頻度がかなり小さく、最低で4%であった。自由端で は主モードの発生頻度は最低で47%であった。
- (2) 固定端の方が一つの Re で発生するモードの種類が多く存在する。これは St の値が変 化してもいえることである。このことは固定端の方が自由端より情報エントロピーが大き いことに通じる。
- (3) 情報エントロビーが定性的な意味だけでなく、定量的な見方ができるとすれば、エント ロピーは固定端の方が全体に大きい値を持つ、これは分岐関係が固定端の方が複雑である ことを意味することになる。
- (4) 固定端も自由端の場合も Reの値により情報エントロピーが変化する。特に、Reが小さい場合エントロピーは大きく、Reが増加すると一旦は減少するがさらに Reが増加すると再び増加する傾向にある。
- (5) 固定端も自由端の場合も St が小さいとエントロピーは小さいが, St が増大すると Re に依存して変化する.

4. 結 論

アスペクト比が小さいテイラー渦において,自由端の場合で特に, Γ=4.9の条件におい て Re と St の変化に対する各モードの発生頻度を実験的に調べたものである。主な結論は 以下のようである。

- (1) ReとStの値によって主モードと2次モードの発生頻度が異なることがわかった。特に Reによって発生頻度が大きく変わり、同じReの値でもStによって変わることがわかった。
- (2) 2次モードは Re によって発生するモードの種類が異なり、さらにその発生頻度が異なることがわかった。また、同じ Re でも St によってモードの発生頻度が異なることがわかった。
- (3) Re と St の変化により発生するモードが異なる現象, すなわち, 多重解を持つテイラー 渦の分岐関係の複雑さを情報エントロビーで表現することで定性的に明らかにした.
- (4) 各モードの形成過程はそれぞれ特徴があることがわかった.モードの選択決定は Re と St の値により半径方向の流れと上下端面上の2次流れの発生の時間差と運動量の大きさ によるものであると思われる。
- (5) 固定端と自由端において、どちらの場合も Re と St の値によって発生するモードが決 定され、モードの発生頻度の Re と St の影響は定性的に類似しているところがあった。 また、その分岐の複雑さはどちらかというと自由端の方が小さかった。

参考文献

- (1) Benjamin, T. B., Proc. R. Soc. Lond. Ser. A, 359, (1973), 1.
- (2) Benjamin, T. B., Proc. R. Soc. Lond. Ser. A, 359, (1978), 27.
- (3) 最近の展望は, Mullin, T. IMA J. Appl, Maths. 46, (1991), 109.
- (4) 中村・ほか3名、機論、56.522、B(1989)、307.
- (5) 戸谷・ほか3名, 機論, 56, 532, B (1990), 3617.
- (6) 戸谷・ほか3名, 機論, 58, 546, B (1992), 305.
- (7) 東・ほか2名, 機論, 57, 535, B (1991), 905.
- (8) 東・ほか2名, 機論, 58, 555, B (1992), 3245.
- (9) Bielek, C. A. and Koschmieder, E. L., Phys. FluidsA, 2-9 (1990), 1557.
- (10) Cole, J. A., J. Fluid Mech., 75-1 (1976), 1.
- (11) Snyder, H. A., J. Fluid Mech., 35-2 (1969), 273.
- (12) 中村·戸谷,機論,投稿中
- (13) Donnelly, R. J., Proc. R. Soc. London, Ser. A, 281, (1964), 130.
- (14) 数理科学辞典(広中編),韓XIV 情報理論,大阪書店(1991),768.