PTFE-VGCF コンポジットの機械的性質および耐摩耗性に及ぼす **VGCF** 添加率の影響^{*}

長坂明彦^{*1}·宮脇崇^{*2}·押田京一^{*3}·川村渉^{*4}·柳澤憲史^{*5}·百瀬成空^{*6}

Effect of VGCF Content on Mechanical Properties and Abrasion Resistance in PTFE-VGCF Composite

NAGASAKA Akihiko, MIYAWAKI Takashi, OSHIDA Kyoichi, KAWAMURA Wataru, YANAGISAWA Kenji and MOMOSE Noritaka

Effect of Vapor Grown Carbon Fiber (VGCF) content on mechanical properties and abrasion resistance in Polytetrafluoroethylene (PTFE) -VGCF composite was investigated. The resin powder of PTFE was used as a matrix of 50 μ m in diameter, and the carbon nano material of VGCF was used as filler. Composite of PTFE resin and VGCF were mixed by blender mill. The VGCF addition was used from 0 wt% to 3 wt%. Tensile test was performed on an Instron type of tensile testing machine at a crosshead speed of 10 mm/min (strain rate: 6×10^{-3} /s), using smooth and V-notched type tensile specimens. Thermal conductivity (λ) was measured using laser flash method. Coefficient of dynamic friction (μ ') was measured using ball-on-disc method.

キーワード: PTFE, VGCF, コンポジット, 機械的性質, 耐摩耗性

1. はじめに

4 フッ化樹脂 (polytetrafluoroethylene: PTFE)¹⁾は, 耐摩耗性,耐薬品性,耐熱性,絶縁特性および耐候性 等に優れ,工業的な利用も多い.一方,気相成長炭素 繊維(Vapor Grown Carbon Fiber: VGCF)²⁾⁻⁶⁾は導電性, 熱伝導性および強度等に優れた特性を有し,電極等の 広い範囲で利用されている.しかしながら,PTFE と VGCF のコンポジットの機械的性質に関する報告は +分に行われていない.

そこで本研究では、PTFE の機械的性質および耐摩 耗性の改善を目的として、カーボンナノ材料との混合 分散により作製した PTFE-VGCF コンポジットの機械 的性質に及ぼすカーボンナノ材料の添加率の影響を4 種類の VGCF を用いて実験的に調査した.

* 2012年3月10日	日本機械学会にて一部発表
--------------	--------------

- *1 機械工学科教授
- *2 長野工業高等専門学校専攻科学生 (平成22年度機械工学科卒業)
- *3 電子情報工学科教授
- *4 株式会社 Nikki Fron
- *5 機械工学科講師
- *6 電気電子工学科助教 原稿受付 2012年5月19日

2. 実験方法

表1に VGCF の代表特性を示す. 母材として, PTFE の樹脂粉末 (ダイキン, 平均粒径 50µm), 添加するカ ーボンナノ材料として, 4 種類の VGCF を用いた. 混 合量は PTFE と VGCF を合わせて 10g 一定とし, 母 材との添加率は, 各 0~3wt%とした.

混合にはブレンダーミル法を用いた. 高速回転のブ レンダーミルにより,回転数 25000rpm,混合時間 30s で行った.

図1に引張試験片形状(板厚 2mm)を示す. 試験 片作製には,平滑試験片(図1(a))用金型には2.25g の混合粉末を,60°V型切欠き試験片(図1(b))用金 型には3.43gの混合粉末を注入し,図2に示す万能試 験機を用いて,圧縮(成形荷重49.1kN,成形時間90s) による予備成形後,焼成した.

引張試験には、小型インストロン型引張試験機を用

表1 VGCF の代表特性

VGCF	R	Х	S	Н
直径 (nm)	150	15	80	150
繊維長 (µm)	10	3	10	15
アスペクト比	67	200	125	100
かさ密度(g/cm ³)	0.04	0.08	0.02	0.08

い, クロスヘッド速度 10mm/min(ひずみ速度 6×10⁻³/s)で行った.

硬さ試験には、ダイナミック超微小硬度計を用い、 押込み硬さ試験でビッカース圧子を用い、ダイナミッ ク硬さ(押込み硬さ)DHVおよび押込み弾性率 E を 評価した.ここで DHV は、負荷中における試験力 P [mN]と押込み深さ h [µm]で次式により評価した.

$$DHV = \frac{3.858P}{h^2} \quad (1)$$

導電性試験には、板厚 *t*=2.0mm の試験片を用い四 探針法により、電気抵抗率 ρ を求めた. 電気抵抗率 ρ は電圧 *V*[mV],電流 *I*[mA],補正係数 *RCF*=4.532 とし て次式により評価した.

$$\rho = \frac{V}{I} t \cdot RCF \qquad (2)$$

図3にコンポジット表面の液滴を示す. 濡れ性評価 試験は、コンポジット上に2.5µlの蒸留水を滴下し、 CCDカメラにより、液滴高さ*H*[mm]、液滴底面の径 *D*[mm]を測定し、濡れ角0を次式により評価した.

$$\theta = 2 \tan^{-1} \frac{2H}{D} \qquad (3)$$

熱伝導試験には、レーザーフラッシュ法を用い、熱 伝導率λを測定した.

摩耗試験には、ボールオンディスク法を用い、動摩 擦係数 μ'および摩耗体積を測定した.測定条件は、回 転半径 r=5mmで軸受回転速度 500rpm(速度 26.2mm/s)、 荷重 1N で軸受鋼に SUJ2 を用いて行った.また、表 面形状粗さ測定器を用いて摩耗表面積 WA[μm²]を測 定し、摩耗量 WV[mm³]を次式により算出した.

 $WV = WA \cdot 2\pi r \cdot 10^{-6} \quad (4)$

3. 実験結果および考察

図 4 に VGCF-R の SEM 写真を示す. VGCF は 67 ~200 とアスペクト比の大きい材料であることがわか る (表 1).

図5に平滑試験片における引張強さTSとVGCF添加率の関係を示す.各々の1wt%コンポジットにおいて、TSが母材に比べ低下する.これはVGCFのサイズが極小なため凝縮が激しく、うまく分散できていないことにより、母材中で不純物としての振る舞いをみせたため、またはVGCFはそもそもsp²混成軌道による六角網面の強固な基底面と母材基底面との接着性

図1 引張試験片形状

図2 万能試験機

図3 コンポジット表面の液滴

図4 VGCF-RのSEM 写真

に課題のある物質であるため, PTFE との間に剥離(ディボンディング)が生じ,融着界面の結合力が弱いために, *TS* が低下したと考えられる⁷⁾.

各 VGCF において、VGCF-X の添加が最も TS を低 下させ、3wt% で VGCF-S と比較して、20%程度低下 する.これは VGCF-X が特に大きなアスペクト比を有 することで繊維同士が絡まり、さらに分散性を悪化さ せたためだと考えられる.VGCF-R と VGCF-X の添加 においては、VGCF 添加率が増加するにつれ、TS は低 下する傾向が見られる.一方、VGCF-S の添加では1 ~3wt%の添加範囲で、TS はほぼ一定に維持された. これは通常、強度は材料の最も弱いところから影響を 強く受ける局所的な量であるが、VGCF-S は分散性が 他の VGCF に比べ優れるため、高い添加率でも大きな 塊にならず、コンポジット内に比較的均一に分散した ため、1~3wt%の添加範囲内で強度が維持できたと考

図 6 に降伏応力 YS と VGCF 添加率の関係を示す. VGCF の種類や添加率による YS の差異は小さく, 添 加率が増加しても YS は維持される. すなわち, 初期 降伏変形は VGCF の種類および添加率が大きく依存 しないことが考えられる.

えられる.

図 7 に全伸び *TEl* と VGCF 添加率の関係を示す. VGCF-X において, 添加率の増加に伴い *TEl* が小さく なる傾向を示すが, VGCF-R と VGCF-S においては, *TEl* は維持される.

図 8 に切欠き試験片における引張強さ TS と VGCF 添加率の関係を示す. TS は VGCF 添加率の増加に伴 い,若干低下する傾向がみられる.しかし, VGCFの 種類による TS の明瞭な差は見られない.これより VGCF の種類および添加率は,応力集中の支配的な因 子でないことが考えられる.また,平滑試験片に比べ, 切欠き試験片は切欠き底に応力集中が発生すること で,切欠き弱化により平滑試験片と比較して,TS が 低下した(0wt%で約23%低下).

図9にPTFE-VGCF コンポジットの(a)ダイナミック 硬さDHV および(b)押込み弾性率 E と VGCF 添加率の 関係を示す.DHV-1 は負荷時の押込み硬さ(塑性変形 +弾性変形),DHV-2 は除荷後の押込み硬さ(塑性変 形)を意味する(図9(a)).ダイナミック硬さDHVは, VGCF 添加率3wt%まで維持される.差分量(DHV-1 – DHV-2)は VGCF3wt%まで変化はなく,VGCF 量によ る弾性変形の程度は変わらない.一方,押込み弾性率 E は VGCF を添加することにより,母材の E と比較し て,高くなる傾向を示す(図9(b)).

表 2 に PTFE-VGCF コンポジットの電気抵抗率 ρ と VGCF 添加率の関係を示す. VGCF-S は 2wt%以上の

図6 平滑試験片における PTFE-VGCF コンポジットの 降伏応力 *YS* と VGCF 添加率の関係

図7 平滑試験片における PTFE-VGCF コンポジットの 全伸び TEI と VGCF 添加率の関係

図8 切欠き試験片における PTFE-VGCF コンポジットの 引張強さ *TS* と VGCF 添加率の関係

添加により導電性が発現する.また,帯電性不導体の 指標により,ρが 108Ωm より小さいことより帯電性 が発現しなかった.これは導電性および分散性に優れ る VGCF-S が母材内に分散し,導電性のネットワーク を構築したことに因ると考えられる.一方,VGCF-X では分散性が低いため,コンポジット内に導電性のネ ットワークが構築されず,導電性を示さなかったと考 えられる.

図 10 に各コンポジットにおける濡れ角 θ を示す. VGCF の種類や添加率に依存することなく、 θ に変化 は見られない.このことより、VGCF 添加における PTFE の撥水性は維持された.VGCF の種類および添 加率は、撥水性に対する支配的な因子でないことが示 唆される.

図 11 に PTFE-VGCF-S コンポジットの熱伝導率 λ と VGCF-S 添加率の関係を示す. VGCF-S を添加する ことにより λ は高くなる傾向を示す (0wt% と 3wt%を 比較して約 67%の増加). このことは VGCF-S の添加 率が λ の向上に寄与したことに因ると考えられる.また一般的に,添加材入り PTFE では, λ が 2 倍になる と回転軸受の特性を表す指標の一つである限界 *PV* 値 が 25%向上する ⁸⁾.

図 12 に PTFE-VGCF コンポジットの(a)動摩擦係数 µ'および(b)摩耗量 WV と VGCF-H 添加率の関係を示す. 図 12(a)において, 添加率に依存することなく µ'は維 持される.また一般的に, 添加材入り PTFE では, µ' が半減すると限界 PV 値が 2 倍になる⁸⁾. 図 12 (b)にお いて, WV は VGCF 添加率の増加に伴い減少する傾向 がみられ, コンポジットの耐摩耗性が向上する.これ は, VGCF の添加により λ が向上し(図 11), 摩擦熱

表 2 PTFE-VGCF コンポジットの体積抵抗率 ρ と VGCF 添加率の関係(Ωm)

VGCF	R	Х	S		
0wt%	絶縁(>10 ¹⁶)				
1wt%	絶縁	絶縁	絶縁		
2wt%	絶縁	絶縁	1.82		
3wt%	絶縁	計測不能	0.35		

図 10 PTFE-VGCF コンポジットの濡れ角 θ

図 11 PTFE-VGCF コンポジットの熱伝導率 λ と VGCF-S 添加率の関係

の除去が容易となるため、凝着摩耗が減り、その結果 としてアブレシブ摩耗も減ったことで、コンポジット の耐摩耗性が向上したためと考えられる.

図 13 に PTFE-VGCF3wt%コンポジットの試験片表 面の SEM 写真を示す. VGCF-X は母材と混合せずに塊 となっている箇所が存在するが(図 13(a), (c)), VGCF-S にはそのような箇所が特に確認できず(図 13(b), (d)), VGCF 易分散性の相違を裏づけた.

4. まとめ

PTFE-VGCF コンポジットの機械的特性および耐摩 耗性に及ぼす VGCF 添加率の影響を調査した.主な結果 は以下のとおりである.

 初期降伏変形は VGCF の種類および添加率が大き く依存しなかった.また VGCF-S の添加により引張強 さ *TS* は低下するが,全伸び *TEI* が維持された.

2) PTFE-VGCF コンポジットは切欠き弱化した.

 3) VGCF-S を 2wt%以上添加することにより導電性が 発現し、帯電性が消失した.

4) PTFE-VGCF コンポジットの撥水性は維持された.

5) 熱伝導率 λ は VGCF-S の添加により増大した.

6) VGCF-H を添加することにより, 耐摩耗性が向上した.

謝辞

最後に、本研究をご支援いただきました文部科学省 地域科学技術振興事業費補助事業 地域イノベーシ ョンクラスタープログラムに対し,深く感謝の意を表 します.

参考文献

1)三井・デュポン フロロケミカル株式会社, テフロ ン実用ハンドブック(1989), 三井・デュポン フロロケ ミカル株式会社

2)M. Endo, TANSO 2001[No.200], 202-205[in Japanese].

3) M. Endo, Grow carbon fibers in the vapor phase,

CHEMTECH (1988) 568-576.

M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita and M. S. Dresselhaus: Carbon 39(2001) 1287-1297.

5) T. Takeda, R. Takahata, Y. J. Kim, K. Koshiba, K. Ishii,T. Kasai and M. Endo: TANSO 2001[No.196] (2001)14-18.

6) K. Emoto, E. Yasuhara, K. Katou and N. Otake, *Journal* of the Japan Society of Mechanical Engineers (C) 69[680] (2003) 1145-1152.

7)前田豊,炭素繊維の最新技術(2007),シーエムシー出版

8)SUN・CHOH, 複合材料活用事典(2001), 日本複合 材料学会編

図 13 PTFE-VGCF コンポジットの表面の SEM 写真 ((a) (c): VGCF-X、(b) (c): VGCF-S)