CVD 法を用いた絶縁性セラミックス膜の合成と特性評価

森山 実*1

Fabrication and Evaluation for Insulated Ceramic Film using Thermal CVD

MORIYAMA Minoru

Alumina film was deposited on several metallic and ceramic substrates by thermal decomposition of metal-organic compound (aluminum-isopropoxide) using thermal CVD to get a insulated ceramic film. The film was characterized by a electric conductivity, morphology observation using scanning electron microscope (SEM), diffraction pattern of X-ray and film thickness.

キーワード:熱 CVD, アルミナ, 薄膜, アルミニウムイソプロポキシド

1. まえがき

CVD(Chemical Vapor Deposition)法^{1)~5)}は,化 学気相堆積法とも呼ばれ,気体(蒸気)状態の原料を 反応室(反応管内)へ輸送し,熱分解や化学反応によ り,加熱した基板上で固体膜を形成する方法である. 原料を適切に選択すれば,ほとんどの組成の膜を形 成でき,付着強度も比較的高く,広く工業的にも用 いられている.

金属またはセラミックス基板上に CVD 法を用いて 絶縁性の膜を形成し,電気特性(導電性,絶縁性), 形態観察,結晶構造,膜厚等の特性評価を行った. 目的は,付着強度の大きい絶縁性の膜を金属または セラミック基板上に形成することである.

2. 原 理

2-1 CVD 原料と反応条件

CVD 法に用いる原料は,一般的には飽和蒸気圧が 高い塩化物が用いられることが多いが,反応により 腐食性の HCI 蒸気が排出されることが多く,環境面 や健康面で問題が発生する危険もある.ここでは, 比較的低温で化学反応が生じる有機金属化合物原料 用いることとした.絶縁性膜の主要な原料を表1に 示す.

2-2 アルミナ絶縁膜の合成反応

有機金属化合物であるアルコキシドの反応には,

*1 電子制御工学科特任教授 原稿受付 2013 年 5 月 18 日 熱分解,酸化,加水分解などの方法がある.

熱分解反応は、式(1)に示す反応で、反応温度(基 板温度)420~600℃、67Å/min、気化温度125~150℃、 キャリアガス N₂、常圧で行われている例がある⁴⁾. 2A1(iso-0C₃H₅)₃ → A1₂O₃ + 3C₃H₇OH + 3C₃H₆ (1) 加水分解反応は、式(2)に示す反応で、Sladek ら は、上記加水分解反応を85℃の低温で行った¹⁾. 2A1(iso-0C₃H₅)₃ + 3H₂O → A1₂O₃ + 6C₃H₇OH (2)

3.実験

3-1 CVD 装置

試作した熱 CVD 装置を図1に示す.外熱式 CVD と 内熱式 CVD の2種類の実験を行なった.図2に示す

形成膜	原料(主な有機金属化	原料融点,用途
	合物をピックアップ)	
アルミナ	アルミニウムイソプ	融点
$A1_{2}0_{3}$	ロポキシド(AIP)	128−132°C
(絶縁性)	A1 ($iso-OC_3H_5$) ₃	沸点 140.5℃
	[(CH ₃) ₂ CHO] ₃ A1	絶縁膜,誘電膜
		光学膜,硬質膜
シリカ SiO ₂	テトラエトキシシラ	沸点 169℃
(絶縁性)	\succ (TEOS)	絶縁膜
	$Si(OC_2H_5)_4$	
ジルコニア	Zr のアルコキシド	絶縁膜
ZrO_2	$\operatorname{Zr}(\operatorname{OC}_4\operatorname{H}_9)_4$	強度膜
(絶縁性)	ジルコニウムテトラ	
	ブトキシド	
チタニア	Titanium Tetra	FP45°
TiO ₂	Iso-Propoxyde (TTIP)	光触媒
(半導性)	$Ti[OCH(CH_3)_2]_4$	

表1 CVD 法に用いられる有機金属化合物原料の例¹⁾

ように、外熱式 CVD は、炉芯管内に基板を入れ、炉 心管を外部から加熱することにより CVD を行う方法 の呼称とする.また、内熱式 CVD は、炉心管内部に 加熱台に乗せた基板を入れ、基板を直接加熱する方 法の呼称とする.

原料のアルミニウムイソプロポキシド(図3参照) は,化学式 A1(iso-OC₃H₅)₃,[(CH₃)₂CHO]₃A1,または, C₉H₂₁A10₃で,分子量 204.25,融点 128~132℃,密度 1.035,加燃性,引火性,危険等級Ⅲである.実験で は,純粋化学製の化学用を用いた.

3-2 外熱式 CVD 装置

内径 60mm 程の炉心管に,マントルヒーターで加熱 した原料を流し込み、反応後の廃ガスは、タンクア スピレーターで吸引排出した. 炉心管(反応管と同 じ)の加熱はプログラム温度調節計で制御し、マント ルヒーターはスライダック調整で温度を保持した. 3-2-1 外熱式CVD実験①

酸素流入量は 60 /分, 成膜時間 2 時間の CVD 条件 で、CVD 反応温度を 500, 600, 700, 800℃に変化さ せ,計4回実験を行った.基板はTi,SUS304の2 種類とした.また表2に4回の実験それぞれのアル ミニウムイソプロポキシド消費量を示す.実験手順 を以下に示す.

- (1) 基板を家庭用洗剤(アルカリ性)で洗い、同じ洗 剤で超音波洗浄する.
- (2)洗剤で超音波洗浄機した基板を濯ぎ、アセトン で再度超音波洗浄する.
- (3) 電子天秤を用いてフラスコを計測し、アルミニ ウムイソプロポキシドを入れて再び計量する.
- (4) フラスコをマントルヒーターに温度計とともに 設置する.
- (5) 基板を台に乗せ炉心管内に設置し、排気ホース をタンクアスピレーターに繋ぐ.
- (6) プログラム温度調節計で CVD 実験温度を入力す ろ.
- (7) CVD 装置, タンクアスピレーター, プログラム 温度調節計を起動させる.
- (8) CVD 装置の温度が 200℃を超えたところで, 原料 とキャリアガスの流入を開始する.
- (9) CVD 終了後は自然冷却させ、基板を取り出す
- (10)フラスコごと残った薬品を計量し、使用された 薬品を算出する.

3-2-2 外熱式CVD実験②

前節の結果、最も基板の状態が良いと考えられた 成膜条件(酸素流入量 60 /分,成膜時間 2 時間,成 膜温度700℃)で基板を10種類取り揃えて成膜した. 基板は、黒鉛、TiC、TiN、SUS410、Si₃N₄、ジルコニ

図1 試作した熱 CVD 装置

図2 熱 CVD 装置の方式:外熱式(a)および内熱式(b)

図3 原料のAl(iso-OC₃H₅)₃錯体の構造

表2 外熱式 CVD 実験①で消費した薬品量(2時間分)

CVD 温度[℃]	莱品量[g]
500	2.652
600	3.681
700	2.168
800	2.738

ア,アルミナ(純度 99.5%), 超硬, AlN, SiC とした. 実験方法は前節と同様である.

3-3 内熱式 CVD 装置

外熱式 CVD 装置のまま、加熱台に基板を乗せて炉 心管に入れた.加熱台はニクロム線をはめ込んだ手 作りの磁器製のもので,熱電対を固定し,スライダ ックを調整して一定温度に保持した. 炉心管内に真 っ直ぐ入るように細長い金属板の上に加熱台を置き, 銅線同士が触れ合わぬように磁製のブロックで固定

した.

3-3-1 内熱式 CVD 実験

3-2-1節の(1)~(4)までと同様の準備を行う. Ti 基板を乗せた磁器製加熱台を炉心管内に入れ,基板 の温度が200℃を超えたところで,あらかじめ150℃ に加熱しておいたアルミニウムイソプロポキシドと 酸素(流量60/分)ガスを同時に流し込んだ.基板温 度が630℃になった時点から90分間を成膜時間とし た.図4に実験中の温度変化を示す.縦軸は温度(℃), 横軸は成膜時間の開始を基点とした時間(分)である.

4. 実験結果

4-1 外熱式 CVD 膜の特性

4-1-1 電気特性

自然冷却して取り出した金属基板上の膜形成面の 電気特性をテスタで測定した.基板の影響も含まれ ると予想されるので,針の振れの大きさを観て,絶 縁性判定の目安とした.表3及び表4に電気特性の 結果を示す.

4-1-2 走查型電子顕微鏡(SEM)組織観察

加速電圧 5kV, 2000 倍以上で観察した. 代表的表 面組織観察像を図 5 ~ 図 15 に示す. 黒鉛基板は, C VD 過程で消失した.

4-1-3 X線回折による結晶分析

X線回折装置を用いて,作製した薄膜の結晶分析 を行った.測定条件はスキャンスピード4°/min, サンプリング幅0.020°,走査範囲20°~90°とし

図4 内熱式 CVD 実験の温度変化

X MARCH AND AND AND AND A	表 3	外熱式 CVD	実験①の電気特性
---------------------------	-----	---------	----------

成膜温度	基板	針の振れ
[°C]		(電気特性)
500	Ti	大きい(導電性)
500	SUS304	振切れ(導電性)
600	Ti	小さい(絶縁性)
600	SUS304	振切れ(導電性)
700	Ti	ない(絶縁性)
700	SUS304	振切れ(導電性)
800	Ti	ない(絶縁性)
	SUS304	振切れ(導電性)

表4 外熱式 CVD 実験(2)の電

基板	針の振れ(電気特性)
黒鉛	CVD 過程で消失
TiC	なし(絶縁性)
TiN	なし(絶縁性)
SUS410	なし(絶縁性)
Si ₃ N ₄	なし(絶縁性)
ジルコニア	なし(絶縁性)
アルミナ 99.5	なし(絶縁性)
超硬	なし(絶縁性)
A1N	なし(絶縁性)
SiC	なし(絶縁性)

図5 外熱式 CVD-SEM 組織観察 Ti (800℃)

図6 外熱式 CVD-SEM 組織観察 SUS340 (700℃)

図7 外熱式 CVD-SEM 組織観察 TiC(700℃)

図8 外熱式 CVD-SEM 組織観察 TiN(700℃)

図9 外熱式 CVD-SEM 組織観察 SUS410 (700℃)

図10 外熱式 CVD-SEM 組織観察 Si₃N₄ (700℃)

図 11 外熱式 CVD-SEM 組織観察 ジルコニア(700℃)

図 12 外熱式 CVD-SEM 組織観察 アルミナ 99.5(700℃)

図 13 外熱式 CVD-SEM 組織観察 超硬(700℃)

図14 外熱式 CVD-SEM 組織観察 A1N(700℃)

図15 外熱式 CVD-SEM 組織観察 SiC(700℃)

表5 外熱式 CVD 法実験②で検出された結晶相

基板	検出された結晶相
	(JCPDS カード番号)
黒鉛	CVD 過程で基板消失
TiC	TiO ₂ (21-1276)
	TiC(32-1383)
TiN	TiN (38-1420)
	TiO ₂ (21-1276)
SUS410	Fe-Cr (54-0331)
Si ₃ N ₄	$\beta - Si_3N_4$ (33-1160)
	SiO ₂ (46-1045)
ジルコニア	Zr _{0.92} Y _{0.08} O _{1.96}
	(48-0224)
アルミナ 99.5	Al ₂ O ₃ (46-1212)
超硬	結晶相同定不可
A1N	AlN (25-1133)
SiC	SiC (49-1428)

た. X線回折法により観察されたピーク角度位置か ら, JCPDS 結晶カードファイルを参照して, 観察さ れた結晶相を同定した. その結果を表5に示す.

実験①および②の結果より,外熱式 CVD 法で成膜 した基板(700℃)の電気特性は絶縁性が得られ,ま た電子顕微鏡表面組織観察の結果から,なめらかな 基板表面を得ることができた.しかし,X線回折結 果によって検出された相はどれも基板自身のもので あり,目的としたアルミナ膜成分は,どれも観察さ れなかった.外熱式 CVD 法では,アルミナは成膜で きなかったか,あるいは,極薄い膜であると推定さ れる.厚いアルミナ絶縁膜は明らかに形成されてい ないと言える.

4-2 内熱式 CVD 膜の特性

4-2-1 電気特性

自然冷却させて取り出した内熱式 CVD 方式で得た Ti 金属基板上の膜面をテスタで電気特性を測定し, 針の振れの大きさを検査した.その結果,針は振れ ず,絶縁性であった.

4-2-2 走查型電子顕微鏡組織観察

図 16 に,加速電圧 5kV で観察した SEM 組織を示す. Ti 金属基板面とは全く異なり, 膜表面に $0.1 \mu m$ 程度に成長した結晶粒が一面に観察され, アルミナ膜が新たに生成したことが分かる.

4-2-3 X線回折による結晶分析

X線回折装置を用いて,作製した薄膜の結晶分析 を行った.測定条件はスキャンスピード4°/min, サンプリング幅0.020°,走査範囲20°~90°とし た.表6に示すように,α-Al₂0₃(70-7349)と少量の Ti(44-1294)が観察された.アルミナは,Ti基板上に新た に形成された結晶膜であるが,Ti成分は基板に由来するも のと推定され,膜が均一に形成されていない可能性もある. 4-2-4 SEMによる破断面観察

成膜した Ti 基板を表面に垂直に切断し,切断面を 観察した. 図 17~図 19 に結果を示す. 図 18 に示す ように、約 40~45 μ m 程度の厚膜が生成され, Ti 基 板との界面も密着しており、基板との付着強度も高 いと推定される. 図 19 に示す膜断面内部には,気泡 なども観察されず, 緻密なアルミナ膜と推定される.

5. 考察

5-1 外熱式 CVD 法

外熱式の CVD 法(700℃)では, 電気特性は絶縁性が 得られたもののアルミナ膜は形成できなかったと言 えるが, この原因としては, アルミナの生成反応が 基板に到達する前に生じたことによると考えられる. 気化させたアルミニウムイソプロポキシドと酸素を あらかじめ混合させてから流入させているが, 加熱 された炉心管に流入した入口付近のガス空間中で反 応が生じたと考えられる. 基板に至る前に反応して しまい, 基板上にアルミナ膜ができなかったと推定 される. 事実, タンクアスピレータに吸引されるホ ース口のところには, アルミナと思われる白い粉が 沢山詰まっていた.

5-2 内熱式 CVD 法

内熱式CVD法でTi基板上に生成した膜の電気特性 は絶縁性であり、SEMによる表面組織観察からは微 粒結晶の膜が得られた. X線回折からはα - Al₂O₃ とTiの相が観察された.SEMによる切断面観察から,

図16 内熱式 CVD-SEM 組織観察 Ti(700℃)

	表 6	内熱式	CVD 法;	形成膜に	:おいて	検出る	された	こ結晶	FE
--	-----	-----	--------	------	------	-----	-----	-----	----

基板	検出された相(カード番号)
Ti	$\alpha - A1_20_3$ (70-7349)
	Ti (44-1294)

図17 内熱式 CVD 破断面観察 Ti(700℃)

図18 内熱式 CVD 破断面観察 Ti(700℃)

図19 内熱式 CVD アルミナ膜断面内の観察 Ti(700℃)

膜厚は約40~45μmで気泡も存在しない緻密な膜と 確認できた.また基板と膜との間の密着性も良く, 付着強度も高いと推定される.内熱式 CVD 法による 実験から,付着性の良い絶縁性のアルミナ膜が金属 基板上に得られたことがわかった.

しかし、40μm程度の厚膜が得られたが、X線回 折結果で、微小ながらも基板の結晶成分である Ti が検出されていることには、今後さらに解明が必要 と思われる.

5-3 CVD 膜の実験例

今後の参考のために、CVD 法に関する実施例をま とめておく.

5-3-1 常圧 CVD-A1203 膜の例 1

原料にアルミニウムイソプロポキシド A1(iso-OC₃H₅)₃を用い,気化温度125℃,キャリア流 量 N_2 約2 ℓ /min,混合ガス流量 N_2 -10%H₂(熱分解反 応型)または N_2 -83%O₂(酸化反応型),全流量10~30 ℓ /min,原料濃度0.15%,反応温度420~600℃,常 圧,反応形式:熱分解(70Å/min),酸化(100Å/min) で行われている^{1),2)}.

5-3-2 常圧 CVD-A1₂0₃膜の例 2

原料としてアルミニウムイソプロポキシド Al (iso-OC₃H₅)₃,気化温度 145~150℃,キャリア流 量 N₂ 1.5 ℓ/min,混合ガス流量 N₂ 9ℓ/min,全流量 10.5 ℓ/min,原料濃度 0.46%,反応温度 325~450℃, 常圧,反応形式:熱分解(4000 Å/min)で行われてい る⁴⁾.他に,減圧 CVD,プラズマ CVD などもある. 5-3-3 CVD-SiO₂膜作製例

シリカ Si0₂ 膜作製例としては(3)式のものがある.

Si $(0C_2H_5)_4 \rightarrow SiO_2 + 4C_2H_4 + 2H_2O$ (3) 原料としてテトラエトキシシラン(TEOS)を用い, 750℃で減圧 CVD 法により SiO₂ 膜を生成した ¹⁾.

5-3-4 ジルコニア膜作成例

原料として、TFAA(トリフルオロアセチルアセトン 錯体)やZrのアルコキシドZr($(OC_4H_9)_4$ が用いられて いる.原料にZr($(OC_4H_9)_4$ を用いた場合、気化温度 43℃、キャリア流量N₂0.027ℓ/min、混合ガス流量 N₂0.094ℓ/minおよびO₂0.027ℓ/min、全流量0.148 ℓ/min、原料濃度0.46%、反応温度300~700℃、圧 カ1~7.5Torr、基板:ガラスおよびSi、成膜速度 1.9mg/h.cm²、生成結晶:単斜晶、正方晶が報告され ている¹⁾.

6.総 括

熱 CVD 法(700℃で2時間)を用いて,有機金属化合物 (金属錯体)原料のアルミニウムイソプロポキシド Al(iso-0C₃H₅)₃から,各種基板上にアルミナ絶縁膜 を形成する実験を行なった.その結果,以下のこと がわかった.

(1) 炉心管の外から基板を加熱し,そこに酸素と原料 を流入して反応させる方法(外熱式 CVD 法)ではア ルミナ膜を得ることができなかった.基板に達する 前に空間ガス中で反応が生じたと推定される.

(2) 炉心管内で基板を直接加熱する方法(内熱式 CV D法)では, Ti 基板上に, 絶縁性で緻密な厚さ40~4 5μmのアルミナ膜を形成することができた.付着性も良好と推定される.

参考文献

- 化学工学会編集:「酸化物」, CVD ハンドブック, pp. 622-675, 朝倉書店(1991.6)
- 2) J.A.Aboaf: "Deposition and Properties of Aluminum Oxide Obtained by Pyrolytic Decomposition of an Aluminum Alkoxide", J. Electrochem. Soc., Vol. 114, No. 9, pp. 948-952 (1967.9)
- 3) H. Prakash: "Thin Film Studies of Oxides by the Organometallic-CVD Technique", Prog. Crystal Growth and Charact., Vol. 6, pp. 371-391(1983)
- 4) C. Dhanavantri and R. N. Karekar: "Study of Graded Aluminum Oxide Films prepared by Matal-Organic Chemical Vapour Deposition", Thin Solid Films, Vol.127, pp. 85-91(1985)
- 5) 日本学術振興会薄膜第 131 委員会編:「化学的方法」, pp. 197-225, 薄膜ハンドブック, オーム社 (1983. 12)